In this section, we first introduce the concepts of an α-type almost-F-contraction and an α-type F-Suzuki contraction and then we prove some fixed point theorems for these contractions in a complete metric space.
We begin with the following definitions.
Definition 3.1
Let \((X,d)\) be a metric space, \(T:X\to X\) be a mapping, and \(\alpha :X\times X\to\{{-\infty}\}\cup(0,\infty)\) be a symmetric function. Then the mapping T is said to be an α-type almost-F-contraction if there exist \(F\in\mathcal{F}\) and \(\tau>0\) and \(L\ge0\) such that
$$\begin{aligned}& d(Tx,Ty)>0 \quad \implies\quad \tau+\alpha(x,y)F\bigl(d(Tx,Ty)\bigr)\le F\bigl(d(x,y)+ Ld(y,Tx)\bigr)\quad \text{and} \\& d(Tx,Ty)>0 \quad \implies\quad \tau+\alpha(x,y)F\bigl(d(Tx,Ty)\bigr)\le F \bigl(d(x,y)+ Ld(x,Ty)\bigr) \end{aligned}$$
for all \(x,y\in X\).
Example 3.1
Let \(X=[0,3]\cup[5,6]\) with the usual metric, \(T:X\to X\) be defined as
$$Tx =\textstyle\begin{cases}0 & \text{if }x\in[0,3], \\ 3 &\text{if }x\in[5,6], \end{cases} $$
and \(F(\alpha)=\ln\alpha\).
Then T is not an almost-F-contraction. Since at \(x=3\) and \(y=5\), \(d(Tx,Ty)>0\) but \(\tau+F(d(Tx,Ty))=\tau+F(3)\), whereas \(F(d(x,y)+ Ld(x,Ty))=F(2)\).
Define
$$\alpha(x,y) =\textstyle\begin{cases} 1 &\text{if } x,y\in[0,3]\text{ or }x,y\in[5,6],\\ 0.1 &\text{otherwise}. \end{cases} $$
Then T is an α-type almost-F-contraction with \(\tau=0.5\) and \(L=3\).
Definition 3.2
Let \((X,d)\) be a metric space \(T:X\to X\) be a mapping and \(\alpha :X\times X\to\{{-\infty}\}\cup(0,\infty)\) be a symmetric function. A map \(T:X\to X\) is said to be an α-type F-Suzuki contraction if there exists \(\tau>0\) such that for all \(x,y\in X\) with \(Tx\ne Ty\)
$$\frac{1}{2}d(x,Tx)< d(x,y)\quad \implies\quad \tau+\alpha(x,y)F\bigl(d(Tx,Ty)\bigr)\le F\bigl(d(x,y)\bigr), $$
where \(F\in\mathcal{G}\).
Example 3.2
Let \(X=[1,3]\cup[5,9]\) with the usual metric and \(F:\mathbb{R}^{+}\to \mathbb{R}\) be defined as \(F(\alpha)=-\frac{1}{\alpha}\). Define a mapping \(T:X\to X\) as
$$Tx =\textstyle\begin{cases}5, &x\in[1,3],\\ 8, &x\in[5,9]. \end{cases} $$
Then T is not F-Suzuki contraction as the condition
$$\frac{1}{2}d(x,Tx)< d(x,y)\quad \implies\quad \tau+F\bigl(d(Tx,Ty)\bigr)\le F \bigl(d(x,y)\bigr) $$
fails for \(x=3\) and \(y=5\).
Define \(\alpha:X\times X \to\{-\infty\} \cup(0,\infty)\) as
$$\alpha(x,y)=2,\quad \mbox{for all }x,y\in X. $$
Then T is α-type F-Suzuki contraction i.e.
$$\frac{1}{2}d(x,Tx)< d(x,y)\quad \implies\quad \tau+\alpha(x,y)F\bigl(d(Tx,Ty)\bigr)\le F\bigl(d(x,y)\bigr) $$
holds for all \(x,y\in X\) with \(\tau=\frac{1}{6}\).
Now, we prove our first result.
Theorem 3.1
Let
\((X,d)\)
be a complete metric space and
\(T:X\to X\)
be an
α-type almost-F-contraction where
\(F\in\mathcal{F}\), satisfying the following conditions:
-
(i)
T
is
α-admissible,
-
(ii)
there exists
\(x_{0}\in X\)
such that
\(\alpha(x_{0},Tx_{0})\ge1\),
-
(iii)
if
\(\{x_{n}\}\)
is a sequence in
X
such that
\(\alpha (x_{n},x_{n+1})\ge1\)
for all
\(n\in\mathbb{N}\cup\{0\}\)
and
\(x_{n}\to x\in X\)
as
\(n\to\infty\)
then
\(\alpha(x_{n},x)\ge1\)
for all
\(n\in\mathbb {N}\cup\{0\}\).
Then
T
has a fixed point
\(x^{\ast}\in X\).
Proof
Let \(x_{0}\in X\) be such that \(\alpha(x_{0},Tx_{0})\ge1\). Define the sequence \(\{x_{n}\}\) in X by \(x_{n+1}=Tx_{n}\), for all \(n\in\mathbb {N}\cup\{0\}\). If \(x_{n+1}=x_{n}\) for some \(n\in\mathbb{N}\), then \(x^{*}=x_{n}\) is a fixed point of T. Let us assume that \(x_{n+1}\neq x_{n}\) for all \(n\in\mathbb{N}\cup\{0\}\).
Since T is α-admissible, we have \(\alpha(x_{0},x_{1})=\alpha(x_{0},Tx_{0})\ge1\), which implies \(\alpha (Tx_{0},Tx_{1})=\alpha(x_{1},x_{2})\ge1\). Continuing in this way we have in general
$$ \alpha(x_{n},x_{n+1})\ge1 \quad \text{for all } n\in\mathbb{N}. $$
(3.1)
Now, \(F(d(x_{n+1},x_{n}))=F(d(Tx_{n},Tx_{n-1}))\le\alpha (x_{n},x_{n-1})F(d(Tx_{n},Tx_{n-1}))\).
Therefore,
$$\begin{aligned} \tau+F\bigl(d(Tx_{n},Tx_{n-1})\bigr) \le& \tau+\alpha (x_{n},x_{n-1})F\bigl(d(Tx_{n},Tx_{n-1}) \bigr) \\ \le& F\bigl(d(x_{n},x_{n-1})+Ld(x_{n},Tx_{n-1}) \bigr). \end{aligned}$$
So \(F(d(x_{n+1},x_{n}))=F(d(Tx_{n},Tx_{n-1}))\le F(d(x_{n},x_{n-1}))-\tau\). In general we get
$$ F\bigl(d(x_{n+1},x_{n})\bigr)=F\bigl(d(Tx_{n},Tx_{n-1}) \bigr)\le F\bigl(d(x_{1},x_{0})\bigr)-n\tau. $$
(3.2)
Thus as \(n\to\infty\), we have \(\lim_{n\to\infty }F(d(x_{n+1},x_{n}))=-\infty\), then by (F2) we have \(\lim_{n\to\infty }d(x_{n+1}, x_{n})=0\). Now, from (F3), there exists \(k\in(0,1)\) such that \(\lim_{n\rightarrow\infty} (d(x_{n+1},x_{n}))^{k}F(d(x_{n+1}, x_{n}))=0\). From (3.2) it follows that
$$\bigl(d(x_{n+1},x_{n})\bigr)^{k}F \bigl(d(x_{n+1},x_{n})\bigr)\le \bigl(d(x_{n+1},x_{n}) \bigr)^{k}\bigl(F\bigl(d(x_{1},x_{0})\bigr)-n\tau \bigr). $$
Then as \(n\to\infty\) we get
$$\lim_{n\to\infty}n\bigl(d(x_{n+1},x_{n}) \bigr)^{k}=0. $$
Therefore, there exists \(n_{0}\in\mathbb{N}\) such that
$$n\bigl(d(x_{n+1},x_{n})\bigr)^{k}\le1, \quad \forall n\ge n_{0}, $$
i.e.
$$d(x_{n+1},x_{n})\le\frac{1}{n^{1/k}}, \quad \forall n\ge n_{0}. $$
Now, for \(m>n>n_{0}\),
$$\begin{aligned} d(x_{n},x_{m}) \le& d(x_{n},x_{n+1})+d(x_{n+1},x_{n+2})+ \cdots +d(x_{m-1},x_{m}) \\ \le& \sum_{n\ge n_{0}}\frac{1}{n^{1/k}}, \end{aligned}$$
which is convergent as \(k\in(0,1)\). Therefore as \(m,n\to\infty\) we get \(d(x_{n},x_{m})\to0\). Hence \(\{x_{n}\}\) is a Cauchy sequence. From the completeness of X we then have \(x^{\ast}\in X\) such that \(x_{n}\to x^{\ast}\).
Now we claim that \(d(x_{n+1},Tx^{*})=d(Tx_{n},Tx^{*})\to0\) as \(n\to\infty\). If \(x^{*}=Tx^{*}\), then the proof is finished. Assume that \(x^{*}\ne Tx^{*}\). If \(x_{n+1}=Tx_{n}=Tx^{*}\) for infinite values of \(n\in\mathbb{N}\cup\{0\} \), then the sequence has a subsequence that converges to \(Tx^{*}\) and the uniqueness of the limit implies \(x^{*}=Tx^{*}\). Then we can assume that \(Tx_{n}\ne Tx^{*}\) for all \(n\in\mathbb{N}\cup\{0\}\). Now using (iii), we have
$$\tau+F\bigl(d\bigl(Tx_{n},Tx^{*}\bigr)\bigr)\le\tau+\alpha \bigl(x_{n},x^{*}\bigr)F\bigl(d\bigl(Tx_{n},Tx^{*}\bigr)\bigr)\le F\bigl(d\bigl(x_{n},x^{*}\bigr)+Ld\bigl(Tx_{n},x^{*}\bigr)\bigr). $$
Then, as \(n\to\infty\) we get
$$\tau+\lim_{n\to\infty}F\bigl(d\bigl(Tx_{n},Tx^{*}\bigr)\bigr) \le-\infty, $$
which will lead to a contradiction of the assumption that \(\lim_{n\to \infty}d(Tx_{n},Tx^{*})>0\) (in respect of (F2)). Thus we have \(x_{n+1}=Tx_{n}\to Tx^{*}\) as \(n\to\infty\) and hence \(Tx^{*}=x^{*}\). □
Theorem 3.2
We further assume that
\(\alpha(x,y)\ge1\)
for all
\(x,y\in \operatorname {Fix}(T) \)
and suppose
T
also satisfies the following condition: there exist
\(G\in\mathcal{F}\)
and some
\(L\ge0\), \(\tau>0\)
such that for all
\(x,y\in X\)
$$\tau+\alpha(x,y)G\bigl(d(Tx,Ty)\bigr)\le G\bigl(d(x,y)+Ld(x,Tx)\bigr) $$
holds. Then the fixed point in the above result is unique.
Proof
Let \(y^{*}\in X\), \(y^{*}\ne x^{*}\) such that \(Ty^{*}=y^{*}\). Then \(d(Tx^{*},Ty^{*})>0\), which implies
$$\tau+G\bigl(d\bigl(Tx^{*},Ty^{*}\bigr)\bigr)\le\tau+\alpha\bigl(x^{*},y^{*}\bigr)G \bigl(d\bigl(Tx^{*},Ty^{*}\bigr)\bigr)\le G\bigl(d\bigl(x^{*},y^{*}\bigr)+L\bigl(x^{*},Tx^{*} \bigr)\bigr). $$
Therefore we have
$$\tau+G\bigl(d\bigl(x^{*},y^{*}\bigr)\bigr)=\tau+G\bigl(d\bigl(Tx^{*},Ty^{*}\bigr)\bigr) \le G\bigl(d\bigl(x^{*},y^{*}\bigr)\bigr), $$
which is a contradiction as \(\tau>0\). □
The following example is illustrative of Theorem 3.2.
Example 3.3
Let \(X=[1,3]\cup[5,9]\) with usual metric and \(F:\mathbb{R}^{+}\to\mathbb {R}\) be defined as \(F(\alpha)=\ln\alpha\). Define a continuous map \(T:X\to X\) as
$$Tx =\textstyle\begin{cases}2x+3, &x\in[1,3],\\ 9, &x\in[5,9]. \end{cases} $$
Then T satisfies all the conditions of Theorem 3.2 for \(\tau\le 1.9408\) and \(L=1\), and hence T has a unique fixed point \(x^{\ast}=9\).
If \(\alpha(x,y)=1\) for all \(x,y\in X\) then we have following result as in [15].
Corollary 3.1
Let
\((X,d)\)
be a complete metric space and
\(T:X\to X\)
be an almost-F-contraction. Then
T
has a fixed point
\(x^{*}\)
in
X.
If \(\alpha(x,y)=1\) for all \(x,y\in X\) and \(L=0\) then we have following result of Wardowski’s [2].
Corollary 3.2
Let
\((X,d)\)
be a complete metric space and
\(T:X\to X\)
be an
F-contraction. Then
T
has a unique fixed point
\(x^{*}\)
in
X.
To prove our next result, we first give the following.
Definition 3.3
[16]
An α-admissible map T is said to have the K-property whenever for each sequence \(\{x_{n}\}\subset X\) with \(\alpha (x_{n},x_{n+1})\ge1\) for all \(n\in\mathbb{N}\cup\{0\}\), then there exists a natural number k such that \(\alpha(Tx_{m},Tx_{n})\ge1\) for all \(m>n\ge k\).
Theorem 3.3
Let
\((X,d)\)
be a complete metric space and
\(T:X\to X\)
be an
α-type
F-Suzuki contraction satisfying the following conditions:
-
(i)
T
is
α-admissible,
-
(ii)
there exists
\(x_{0}\in X\)
such that
\(\alpha(x_{0},Tx_{0})\ge1\),
-
(iii)
T
has the
K-property,
-
(iv)
if
\(\{x_{n}\}\)
is a sequence in
X
such that
\(\alpha (x_{n},x_{n+1})\ge1\)
for all
\(n\in\mathbb{N}\cup\{0\}\)
and
\(x_{n}\to x\in X\)
as
\(n\to\infty\), then
\(\alpha(x_{n},x)\ge1\)
for all
\(n\in\mathbb {N}\cup\{0\}\).
Then
T
has a fixed point
\(x^{\ast}\in X\).
Proof
Let \(x_{0}\in X\) be such that \(\alpha(x_{0},Tx_{0})\ge1\). Define the sequence \(\{x_{n}\}\subseteq X\) by \(x_{n+1}=Tx_{n}\), for all \(n\in\mathbb {N}\cup\{0\}\). Since T is α-admissible we have \(\alpha(x_{0},x_{1})=\alpha(x_{0},Tx_{0})\ge1\), which implies \(\alpha (Tx_{0},Tx_{1})=\alpha(x_{1},x_{2})\ge1\). Continuing in this way we have in general
$$ \alpha(x_{n},x_{n+1})\ge1 \quad \text{for all } n\in\mathbb{N}\cup \{0\}. $$
(3.3)
If \(x_{n+1}=x_{n}\) for some \(n\in\mathbb{N}\cup\{0\}\), then \(x^{*}=x_{n}\) is a fixed point of T. Let us assume that \(x_{n+1}\neq x_{n}\) for all \(n\in \mathbb{N}\cup\{0\}\). Therefore \(\frac{1}{2}d(x_{n},Tx_{n})< d(x_{n},Tx_{n})\) for all \(n\in\mathbb{N}\cup\{0\}\) and hence
$$\begin{aligned} \tau+F\bigl(d\bigl(Tx_{n},T^{2}x_{n}\bigr)\bigr) &\le\tau+\alpha(x_{n},Tx_{n})F\bigl(d\bigl(Tx_{n},T^{2}x_{n} \bigr)\bigr)\\ &\le F\bigl(d(x_{n},Tx_{n})\bigr) \quad \text{for all } n \in\mathbb{N}\cup\{0\}. \end{aligned} $$
So \(F(d(Tx_{n},T^{2}x_{n}))\le F(d(x_{n},Tx_{n}))-\tau\) and repeating this process in general we get
$$F\bigl(d\bigl(Tx_{n},T^{2}x_{n}\bigr)\bigr)\le F \bigl(d(x_{0},x_{1})\bigr)-n\tau. $$
As \(n\to\infty\) we obtain
$$\lim_{n\to\infty}F\bigl(d(x_{n+1},x_{n+2})\bigr)=- \infty, $$
which together with (G2) and by Lemma 2.1, gives
$$\lim_{n\to\infty}d(x_{n+1},x_{n+2})=0. $$
Suppose \(\{x_{n}\}\) is not a Cauchy sequence. Then there exist \(\varepsilon>0\) and \(p(n)>q(n)>n\ge k\) such that \(d(x_{p(n)},x_{q(n)})\ge\varepsilon\) and \(d(x_{(p(n)-1)},x_{q(n)})< \varepsilon\).
Now
$$\varepsilon\le d(x_{p(n)},x_{q(n)})\le d(x_{p(n)},x_{p(n)-1})+d(x_{p(n)-1},x_{q(n)})< d(x_{p(n)},x_{p(n)-1})+ \varepsilon. $$
Therefore
$$ \lim_{n\to\infty}d(x_{p(n)},x_{q(n)})=\varepsilon. $$
(3.4)
Again we have
$$d(x_{p(n)},x_{q(n)})\le d(x_{p(n)},x_{p(n)+1})+d(x_{p(n)+1},x_{q(n)+1})+d(x_{q(n)+1},x_{q(n)}) $$
and
$$d(x_{p(n)+1},x_{q(n)+1})\le d(x_{p(n)+1},x_{p(n)})+d(x_{p(n)},x_{q(n)})+d(x_{q(n)},x_{q(n)+1}). $$
So as \(n\to\infty\), from the above two inequalities we have
$$ \lim_{n\to\infty}d(x_{p(n)+1},x_{q(n)+1})=\varepsilon. $$
(3.5)
Therefore there exists \(k\in\mathbb{N}\) such that \(\frac {1}{2}d(x_{p(n)},x_{q(n)})< d(x_{p(n)},x_{q(n)})\) for all \(n\ge k\). Using the K-property we have
$$\begin{aligned} \tau+F\bigl(d(Tx_{p(n)},Tx_{q(n)})\bigr) \le& \tau+\alpha (x_{p(n)},x_{q(n)})F\bigl(d(Tx_{p(n)},Tx_{q(n)}) \bigr) \\ \le& F\bigl(d(x_{p(n)},x_{q(n)})\bigr). \end{aligned}$$
So as \(n\to\infty\) and by (G3), we get \(\tau+F(\varepsilon)\le F(\varepsilon)\), which is a contradiction. Hence \(\{x_{n}\}\) is a Cauchy sequence in X and so it converges to some \(x^{\ast}\) in X.
Next, we claim that
$$\begin{aligned}& \frac{1}{2}d(x_{n},Tx_{n})< d\bigl(x_{n},x^{\ast}\bigr)\quad \mbox{or} \\& \frac{1}{2}d\bigl(Tx_{n},T^{2}x_{n}\bigr)< d \bigl(Tx_{n},x^{\ast}\bigr)\quad \text{for all } n\in\mathbb{N.} \end{aligned}$$
Assume there exists \(m\in\mathbb{N}\) such that
$$\frac{1}{2}d(x_{m},Tx_{m})\ge d \bigl(x_{m},x^{\ast}\bigr) \quad \text{and}\quad \frac {1}{2}d \bigl(Tx_{m},T^{2}x_{m}\bigr)\ge d \bigl(Tx_{m},x^{\ast}\bigr). $$
Then,
$$2d\bigl(x_{m},x^{\ast}\bigr)\le d(x_{m},Tx_{m}) \le d\bigl(x_{m},x^{\ast}\bigr)+d\bigl(x^{\ast},Tx_{m} \bigr) $$
and hence
$$ d\bigl(x_{m},x^{\ast}\bigr)\le d\bigl(x^{\ast},Tx_{m} \bigr) \le\frac{1}{2}d\bigl(Tx_{m},T^{2}x_{m} \bigr). $$
(3.6)
Since \(\frac{1}{2}d(x_{m},Tx_{m}) < d(x_{m},Tx_{m})\), we have
$$\tau+F\bigl(d\bigl(Tx_{m},T^{2}x_{m}\bigr)\bigr) \le\tau+\alpha(x_{m},Tx_{m})F\bigl(d\bigl(Tx_{m},T^{2}x_{m} \bigr)\bigr)\le F\bigl(d(x_{m},Tx_{m})\bigr), $$
which implies \(F(d(Tx_{m},T^{2}x_{m}))< F(d(x_{m},Tx_{m}))\) and so \(d(Tx_{m},T^{2}x_{m})< d(x_{m},Tx_{m})\). Now
$$\begin{aligned} d\bigl(Tx_{m},T^{2}x_{m}\bigr) < &d(x_{m},Tx_{m}) \\ \le& d\bigl(x_{m},x^{\ast}\bigr)+d\bigl(x^{\ast},Tx_{m} \bigr) \\ \le& \frac{1}{2}d\bigl(Tx_{m},T^{2}x_{m} \bigr)+\frac{1}{2}d\bigl(Tx_{m},T^{2}x_{m} \bigr)=d\bigl(Tx_{m},T^{2}x_{m}\bigr). \end{aligned}$$
Thus, for every \(n\in\mathbb{N}\) either
$$\begin{aligned}& \tau+F\bigl(d\bigl(Tx_{n},Tx^{\ast}\bigr)\bigr)\le\tau+\alpha \bigl(x_{n},x^{\ast}\bigr)F\bigl(d\bigl(Tx_{n},Tx^{\ast}\bigr)\bigr)\le F\bigl(d\bigl(x_{n},x^{\ast}\bigr)\bigr) \quad \text{or} \\& \tau+F\bigl(d\bigl(T^{2}x_{n},Tx^{\ast}\bigr)\bigr) \le\tau+\alpha\bigl(x_{n+1},x^{\ast}\bigr)F\bigl(d \bigl(T^{2}x_{n},Tx^{\ast}\bigr)\bigr)\le F\bigl(d \bigl(x_{n+1},x^{\ast}\bigr)\bigr). \end{aligned}$$
As \(n\to\infty\) we get from the above
$$\begin{aligned}& \lim_{n\to\infty}F\bigl(d\bigl(Tx_{n},Tx^{\ast}\bigr)\bigr)=-\infty \quad \text{and} \\& \lim_{n\to\infty}F\bigl(d\bigl(T^{2}x_{n},Tx^{\ast}\bigr)\bigr)=-\infty, \end{aligned}$$
respectively. This further gives
$$\lim_{n\to\infty}d\bigl(Tx_{n},Tx^{\ast}\bigr)=0 \quad \text{and}\quad \lim_{n\to\infty }d\bigl(T^{2}x_{n},Tx^{\ast}\bigr)=0. $$
Then
$$0\le d\bigl(x^{\ast},Tx^{\ast}\bigr)\le d\bigl(x^{\ast},Tx_{n} \bigr)+d\bigl(Tx_{n},Tx^{\ast}\bigr), $$
which as \(n\to\infty\) gives \(d(x^{\ast},Tx^{\ast})=0\) and hence \(Tx^{\ast}=x^{\ast}\). □
Theorem 3.4
If we further assume that
\(\alpha(x,y)\ge1\)
for all
\(x,y\in \operatorname {Fix}(T) \), then the fixed point is unique in the above result.
Proof
Let \(y^{*}\in X\), \(y^{*}\ne x^{*}\) such that \(Ty^{*}=y^{*}\). Then \(\frac {1}{2}d(Tx^{*},x^{*})=0< d(x^{*},y^{*})\), which implies
$$\tau+F\bigl(d\bigl(Tx^{*},Ty^{*}\bigr)\bigr)\le\tau+\alpha\bigl(x^{*},y^{*}\bigr)F \bigl(d\bigl(Tx^{*},Ty^{*}\bigr)\bigr)\le F\bigl(d\bigl(x^{*},y^{*}\bigr)\bigr). $$
Therefore, we have
$$\tau+F\bigl(d\bigl(x^{*},y^{*}\bigr)\bigr)=\tau+F\bigl(d\bigl(Tx^{*},Ty^{*}\bigr)\bigr) \le F\bigl(d\bigl(x^{*},y^{*}\bigr)\bigr), $$
which is a contradiction as \(\tau>0\). □
The following example illustrates Theorem 3.4.
Example 3.4
Let \(X=[1,3]\cup[5,9]\) with the usual metric and \(F:\mathbb{R}^{+}\to \mathbb{R}\) be defined as \(F(\alpha)=-\frac{1}{\alpha}\). Define a continuous map \(T:X\to X\) as
$$Tx =\textstyle\begin{cases}2x+3, &x\in[1,3],\\ 9, &x\in[5,9]. \end{cases} $$
Then T is not a F-Suzuki contraction as the condition
$$\frac{1}{2}d(x,Tx)< d(x,y)\quad \implies\quad \tau+F\bigl(d(Tx,Ty)\bigr)\le F \bigl(d(x,y)\bigr) $$
fails for \(x=1\) and \(y=5\).
Now, we distinguish following cases:
Case 1. If \(x,y\in[1,3]\) then there are no points for which \(\frac {1}{2}d(x,Tx)< d(x,y)\) holds, so we are through.
Case 2. If \(x,y\in[5,9]\) then \(Tx=Ty\) so we are done.
Case 3. Let \(x\in[1,3]\) and \(y\in[5,9]\). In this case we have \(d(Tx,Ty)\le4\) and \(2\le d(x,y)\). Therefore \(\tau+\alpha(x,y)F(d(Tx,Ty))\le\tau+\alpha(x,y) F(4)=\tau-\frac{\alpha (x,y)}{4}\) and \(F(2)\le F(d(x,y))\) by (F2). So for given \(\alpha(x,y)\) we can choose τ for which \(\tau\le \frac{\alpha(x,y)-2}{4}\) holds. Then for that \(\alpha(x,y) \) and \(\tau>0\) we are done.
In particular, if we define \(\alpha:X\times X \to(0,\infty)\cup\{ -\infty\}\) as
$$\alpha(x,y)=3 \quad \text{for all } x,y\in X. $$
Then T satisfies all the conditions of the above theorem with \(\tau =\frac{1}{4}\) and hence T has an unique fixed point \(x^{\ast}=9\).
If \(\alpha(x,y)=1\) for all \(x,y\in X\) then we have following result
Corollary 3.3
Let
\((X,d)\)
be a complete metric space and
\(T:X\to X\)
be an
F-Suzuki contraction. Then
T
has a unique fixed point
\(x^{*}\)
in
X.