Lemma 3.1
Let
E
be a real strictly convex Banach space and
C
be a nonempty, closed, and convex subset of
E. Let
\(A_{i}: C \rightarrow E\)
be
m-accretive mappings, where
\(i = 1,2,\ldots \) . Suppose
\(D: = \bigcap_{i = 1}^{\infty} N(A_{i}) \neq\emptyset\)
and
\(\{r_{n,i}\}\subset(0,+\infty)\)
for
\(i = 1,2, \ldots\) . If
\(\{a_{i}\}_{i = 0}^{\infty}\subset(0,1)\)
satisfies
\(\sum_{i = 0}^{\infty}a_{i} = 1\). Then
\((a_{0} I + \sum_{i =1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}) : E \rightarrow E\)
is nonexpansive and
$$\operatorname{Fix}\Biggl(a_{0} I + \sum_{i =1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr) = D, $$
where
\(J_{r_{n,i}}^{A_{i}} = (I+r_{n,i}A_{i})^{-1}\)
for
\(n \geq1 \)
and
\(i = 1,2,\ldots\) .
Proof
If we set \(T_{1} = I\) and \(T_{i+1} = J_{r_{n,i}}^{A_{i}}\), then \((a_{0} I + \sum_{i =1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}) = \sum_{i = 0 }^{\infty}a_{i}T_{i+1}\). Since both I and \(J_{r_{n,i}}^{A_{i}}\) are nonexpansive, Lemma 2.1 implies that \((a_{0} I + \sum_{i =1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}})\) is nonexpansive and
$$\operatorname{Fix}\Biggl(a_{0} I + \sum_{i =1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr) = \bigcap_{i =1}^{\infty} \operatorname{Fix}\bigl(J_{r_{n,i}}^{A_{i}}\bigr) = \bigcap _{i =1}^{\infty} N(A_{i}) = D. $$
This completes the proof. □
Theorem 3.1
Let
E
be a real strictly convex Banach space which has a weakly continuous duality mapping
\(J_{\varphi}\). Let
C
be a nonempty, closed, and convex sunny nonexpansive retract of
E, and
\(Q_{C}\)
be the sunny nonexpansive retraction of
E
onto
C. Let
\(f : C \rightarrow C \)
be a contraction with contractive constant
\(k \in (0,1)\). Let
\(A_{i}: C \rightarrow E\)
be
m-accretive mappings, for
\(i = 1,2,\ldots \) . Let
\(D : = \bigcap_{i = 1}^{\infty}N(A_{i})\neq \emptyset\). Suppose
\(\{\alpha_{n}\}, \{\beta_{n}\}, \{\mu_{n}\}, \{\gamma_{n}\}, \{\delta_{n}\}, \{\zeta_{n}\} \subset(0,1)\), and
\(\{r_{n,i}\}\subset(0,+\infty)\)
for
\(i = 1,2, \ldots\) . Suppose
\(\{a_{i}\}_{i = 0}^{\infty}\subset(0,1)\)
with
\(\sum_{i = 0}^{\infty}a_{i} = 1\)
and
\(\{e_{n}\} \subset E\)
is the error sequence. Let
\(\{x_{n}\}\)
be generated by the following iterative algorithm:
$$ \left \{ \textstyle\begin{array}{l} x_{1}\in C, \\ u_{n} = Q_{C}[(1-\alpha_{n})(x_{n}+e_{n})], \\ v_{n}= (1- \beta_{n})x_{n} + \beta_{n} (a_{0}I+\sum_{i = 1}^{\infty }a_{i}J_{r_{n,i}}^{A_{i}})u_{n}, \\ w_{n} = \mu_{n} f(x_{n}) + \gamma_{n} x_{n} + \delta_{n} v_{n}, \\ x_{n+1}= (1-\zeta_{n}) w_{n} + \zeta_{n} x_{n}, \quad n \geq 1. \end{array}\displaystyle \right . $$
(3.1)
Further suppose that the following conditions are satisfied:
-
(i)
\(\alpha_{n} \rightarrow0\), \(\delta_{n} \rightarrow0\), \(\mu_{n} \rightarrow0\), as
\(n \rightarrow\infty\);
-
(ii)
\(\mu_{n} + \gamma_{n}+\delta_{n} \equiv1\), \(n \geq1\);
-
(iii)
\(0 < \liminf_{n \rightarrow+\infty}\beta_{n}\leq \limsup_{n \rightarrow+\infty} \beta_{n} < 1\)
and
\(0 < \liminf_{n \rightarrow+\infty}\zeta_{n}\leq \limsup_{n \rightarrow+\infty} \zeta_{n} < 1\);
-
(iv)
\(\sum_{n=1}^{\infty}|r_{n+1,i} - r_{n,i}| < +\infty\)
and
\(r_{n,i}\geq\varepsilon> 0\), for
\(n \geq1\)
and
\(i = 1,2,\ldots\) ;
-
(v)
\(\gamma_{n+1}-\gamma_{n} \rightarrow0\), \(\beta_{n+1}-\beta_{n} \rightarrow0\), as
\(n \rightarrow\infty\);
-
(vi)
\(\sum_{n=1}^{\infty}\|e_{n}\| < +\infty\).
Then the three sequences
\(\{x_{n}\}\), \(\{u_{n}\}\), and
\(\{w_{n}\}\)
converge weakly to the unique element
\(q_{0} \in D\), which satisfies, for
\(\forall y \in D\),
$$ \limsup_{n \rightarrow\infty}\Phi\bigl(\Vert x_{n} - q_{0}\Vert \bigr)= \min_{y \in D}\limsup _{n \rightarrow\infty}\Phi\bigl(\Vert x_{n} - y\Vert \bigr). $$
(3.2)
Proof
We shall split the proof into five steps.
Step 1. \(\{x_{n}\}\), \(\{u_{n}\}\), \(\{\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n}\}\), \(\{v_{n}\}\), and \(\{f(x_{n})\}\) are all bounded.
We shall first show that \(\forall p \in D\),
$$ \|x_{n+1}-p\| \leq M_{1} + \sum_{i = 1}^{n} \|e_{i}\|, $$
(3.3)
where \(M_{1} = \max \{\|x_{1} -p\|, \frac{\|f(p)-p\|}{1-k}, \|p\|\}\).
By using Lemma 3.1 and the induction method, we see that, for \(n=1\), \(\forall p \in D\),
$$\begin{aligned} \Vert x_{2} - p\Vert \leq&(1-\zeta_{1})\Vert w_{1}-p\Vert +\zeta_{1}\Vert x_{1}-p\Vert \\ \leq&(1-\zeta_{1})\bigl[\mu_{1} \bigl\Vert f(x_{1}) - p\bigr\Vert + \gamma_{1} \Vert x_{1} - p\Vert +\delta_{1} \Vert v_{1}-p\Vert \bigr]+ \zeta_{1}\Vert x_{1}-p\Vert \\ \leq&(1-\zeta_{1})\Biggl[k \mu_{1} \Vert x_{1} - p\Vert + \mu_{1} \bigl\Vert f(p)-p\bigr\Vert + \gamma_{1}\Vert x_{1}-p\Vert \\ &{}+\delta_{1}(1-\beta_{1})\Vert x_{1}-p\Vert +\delta_{1}\beta_{1} \Biggl\Vert \Biggl(a_{0}I+ \sum_{i = 1}^{\infty}a_{i}J_{r_{1,i}}^{A_{i}} \Biggr)u_{1} - p\Biggr\Vert \Biggr]+\zeta_{1}\Vert x_{1}-p\Vert \\ \leq&(1-\zeta_{1})\bigl[k\mu_{1}+\gamma_{1}+ \delta_{1}(1-\beta_{1})\bigr]\Vert x_{1}-p\Vert + (1-\zeta_{1})\mu_{1}\bigl\Vert f(p)-p\bigr\Vert + \zeta_{1}\Vert x_{1}-p\Vert \\ &{}+ (1-\zeta_{1})\delta_{1}\beta_{1}\Vert u_{1}-p\Vert \\ \leq& (1-\zeta_{1})\bigl[k\mu_{1}+\gamma_{1}+ \delta_{1}(1-\beta_{1})\bigr]\Vert x_{1}-p\Vert + (1-\zeta_{1})\mu_{1}\bigl\Vert f(p)-p\bigr\Vert + \zeta_{1}\Vert x_{1}-p\Vert \\ &{}+ (1-\zeta_{1})\delta _{1}\beta_{1}\bigl\Vert (1-\alpha_{1}) (x_{1}+e_{1})-p\bigr\Vert \\ \leq& \bigl[1-(1-k)\mu_{1}(1-\zeta_{1})- \alpha_{1}\beta_{1}\delta_{1}(1-\zeta_{1}) \bigr] \Vert x_{1} - p\Vert + (1-\zeta_{1}) (1- \alpha_{1})\beta_{1}\delta_{1}\Vert e_{1}\Vert \\ &{}+(1-\zeta_{1})\alpha_{1}\beta_{1} \delta_{1}\Vert p\Vert +(1-\zeta_{1})\mu_{1}(1-k) \frac{\Vert f(p)-p\Vert }{1-k} \\ \leq& M_{1} + \Vert e_{1}\Vert . \end{aligned}$$
Suppose that (3.3) is true for \(n = k\). Then, for \(n = k+1\),
$$\begin{aligned} \Vert x_{k+2} - p\Vert \leq&(1-\zeta_{k+1})\Vert w_{k+1}-p\Vert +\zeta _{k+1}\Vert x_{k+1}-p\Vert \\ \leq&(1-\zeta_{k+1})\bigl[\mu_{k+1} \bigl\Vert f(x_{k+1}) - p\bigr\Vert + \gamma_{k+1} \Vert x_{k+1} - p\Vert +\delta_{k+1} \Vert v_{k+1}-p \Vert \bigr] \\ &{}+\zeta_{k+1}\Vert x_{k+1}-p\Vert \\ \leq&(1-\zeta_{k+1})\Biggl[k \mu_{k+1} \Vert x_{k+1} - p\Vert + \mu_{k+1} \bigl\Vert f(p)-p\bigr\Vert +\gamma_{k+1}\Vert x_{k+1}-p\Vert \\ &{}+\delta_{k+1}(1-\beta_{k+1})\Vert x_{k+1}-p \Vert +\delta_{k+1}\beta_{k+1} \Biggl\Vert \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{{k+1},i}}^{A_{i}} \Biggr)u_{k+1} - p\Biggr\Vert \Biggr] \\ &{}+\zeta_{k+1}\Vert x_{k+1}-p\Vert \\ \leq& (1-\zeta_{k+1})\bigl[k\mu_{k+1}+\gamma_{k+1}+ \delta_{k+1}(1-\beta_{k+1})\bigr]\Vert x_{k+1}-p \Vert \\ &{}+ (1-\zeta_{k+1})\mu_{k+1}\bigl\Vert f(p)-p\bigr\Vert + \zeta_{k+1}\Vert x_{k+1}-p\Vert + (1- \zeta_{k+1})\delta_{k+1}\beta_{k+1}\Vert u_{k+1}-p\Vert \\ \leq& \bigl\{ (1-\zeta_{k+1})\bigl[k\mu_{k+1}+ \gamma_{k+1}+\delta_{k+1}(1-\beta_{k+1})\bigr]+ \zeta_{k+1}\bigr\} \Vert x_{k+1}-p\Vert \\ &{}+ (1- \zeta_{k+1})\mu_{k+1}\bigl\Vert f(p)-p\bigr\Vert \\ &{}+ (1-\zeta_{k+1})\delta_{k+1}\beta_{k+1}\bigl\Vert (1-\alpha _{k+1}) (x_{k+1}+e_{k+1})-p\bigr\Vert \\ \leq& \bigl[1-(1-k)\mu_{k+1}(1-\zeta_{k+1})- \alpha_{k+1}\beta_{k+1}\delta _{k+1}(1- \zeta_{k+1})\bigr] \Vert x_{k+1} - p\Vert + \Vert e_{k+1}\Vert \\ &{}+(1-\zeta_{k+1})\alpha_{k+1}\beta_{k+1} \delta_{k+1}\Vert p\Vert +(1-\zeta_{k+1}) \mu_{k+1}(1-k)\frac{\Vert f(p)-p\Vert }{1-k} \\ \leq& M_{1} + \sum_{i = 1}^{k+1} \Vert e_{i}\Vert . \end{aligned}$$
Thus (3.3) is true for all \(n \in N^{+}\). Since \(\sum_{n=1}^{\infty}\|e_{n}\| < +\infty\), (3.3) ensures that \(\{x_{n}\}\) is bounded.
For \(\forall p \in D\), from \(\|u_{n} - p\| \leq \|(1-\alpha_{n})(x_{n}+e_{n})-p\|\leq\|x_{n}\|+\|e_{n}\|+\|p\|\), we see that \(\{u_{n}\}\) is bounded.
Since \(\|\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n}\|\leq \|\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} - \sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}p\|+(1-a_{0})\|p\|\leq\|u_{n} -p\|+\|p\|\), \(\{\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n}\}\) is bounded. Since both \(\{\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n}\}\) and \(\{x_{n}\}\) are bounded, \(\{v_{n}\}\) is bounded. From the definition of a contraction, we can easily see that \(\{f(x_{n})\}\) is bounded.
Set \(M_{2} = \sup\{ \|u_{n}\|, \|J_{r_{n,i}}^{A_{i}}u_{n}\|, \|\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n}\|, \|f(x_{n})\|, \|v_{n}\|, \|x_{n}\|, : n \geq1, i\geq1\}\).
Step 2. \(\lim_{n \rightarrow\infty} \|x_{n} -w_{n}\| = 0\) and \(\lim_{n \rightarrow\infty} \|x_{n+1} - x_{n} \| = 0\).
In fact, if \(r_{n,i}\leq r_{n+1,i}\), then, using Lemma 2.6,
$$\begin{aligned}& \Biggl\Vert \sum_{i = 1}^{\infty}a_{i}J_{r_{n+1,i}}^{A_{i}}u_{n+1}- \sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert \\& \quad \leq\sum_{i = 1}^{\infty}a_{i} \bigl\Vert J_{r_{n+1,i}}^{A_{i}}u_{n+1}-J_{r_{n,i}}^{A_{i}}u_{n} \bigr\Vert \\& \quad = \sum_{i = 1}^{\infty}a_{i} \biggl\Vert J_{r_{n,i}}^{A_{i}}\biggl(\frac{r_{n,i}}{r_{n+1,i}}u_{n+1}+ \biggl(1-\frac {r_{n,i}}{r_{n+1,i}}\biggr)J_{r_{n+1,i}}^{A_{i}}u_{n+1} \biggr) - J_{r_{n,i}}^{A_{i}}u_{n}\biggr\Vert \\& \quad \leq\sum_{i = 1}^{\infty}a_{i} \biggl\Vert \frac{r_{n,i}}{r_{n+1,i}}u_{n+1}+\biggl(1-\frac {r_{n,i}}{r_{n+1,i}} \biggr)J_{r_{n+1,i}}^{A_{i}}u_{n+1}-u_{n}\biggr\Vert \\& \quad \leq(1-a_{0})\Vert u_{n+1}-u_{n}\Vert + \sum_{i = 1}^{\infty}a_{i}\biggl(1- \frac{r_{n,i}}{r_{n+1,i}}\biggr)\bigl\Vert J_{r_{n+1,i}} ^{A_{i}}u_{n+1}-u_{n} \bigr\Vert \\& \quad \leq(1-a_{0})\Vert u_{n+1}-u_{n}\Vert + \frac{2M_{2}}{\varepsilon}\sum_{i = 1}^{\infty}(r_{n+1,i}-r_{n,i}). \end{aligned}$$
(3.4)
If \(r_{n+1,i}\leq r_{n,i}\), then imitating the proof of (3.4), we have
$$\begin{aligned}& \Biggl\Vert \sum_{i = 1}^{\infty}a_{i}J_{r_{n+1,i}}^{A_{i}}u_{n+1}- \sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert \\& \quad \leq(1-a_{0})\Vert u_{n+1}-u_{n}\Vert + \frac{2M_{2}}{\varepsilon}\sum_{i = 1}^{\infty}(r_{n,i}-r_{n+1,i}). \end{aligned}$$
(3.5)
Combining (3.4) and (3.5), we have
$$\begin{aligned} \begin{aligned}[b] &\Biggl\Vert \sum_{i = 1}^{\infty}a_{i}J_{r_{n+1,i}}^{A_{i}}u_{n+1}- \sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert \\ &\quad \leq(1-a_{0})\Vert u_{n+1}-u_{n}\Vert + \frac{2M_{2}}{\varepsilon}\sum_{i = 1}^{\infty}|r_{n,i}-r_{n+1,i}|. \end{aligned} \end{aligned}$$
(3.6)
On the other hand,
$$\begin{aligned} \|u_{n+1}-u_{n}\| \leq& \|x_{n+1}-x_{n} \|+\alpha_{n+1}\|x_{n+1}\|+\alpha_{n} \|x_{n}\| \\ &{}+\|\alpha _{n+1}e_{n+1}-\alpha_{n}e_{n} \|+\|e_{n+1}-e_{n}\|. \end{aligned}$$
(3.7)
In view of (3.6) and (3.7), we have
$$\begin{aligned} \Vert v_{n+1}-v_{n}\Vert \leq& (1-\beta_{n+1}) \Vert x_{n+1}-x_{n}\Vert +a_{0} \beta_{n+1}\Vert u_{n+1}-u_{n}\Vert \\ &{}+\beta_{n+1} \Biggl\Vert \sum_{i = 1}^{\infty}a_{i}J_{r_{n+1,i}}^{A_{i}}u_{n+1} - \sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert \\ &{} +|\beta_{n+1}-\beta_{n}|\Vert x_{n}\Vert + a_{0}|\beta_{n+1}-\beta_{n}|\Vert u_{n} \Vert +|\beta_{n+1}-\beta_{n}|\Biggl\Vert \sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert \\ \leq& (1-\beta_{n+1})\Vert x_{n+1}-x_{n}\Vert +a_{0}\beta_{n+1}\bigl[\Vert x_{n+1}-x_{n} \Vert +\alpha _{n+1}\Vert x_{n+1}\Vert \\ &{}+\alpha_{n}\Vert x_{n}\Vert + \Vert e_{n+1}-e_{n}\Vert +\Vert \alpha_{n+1}e_{n+1}- \alpha_{n}e_{n}\Vert \bigr] \\ &{} + \beta_{n+1}\Biggl[ (1-a_{0})\Vert u_{n+1}-u_{n}\Vert +\frac{2M_{2}}{\varepsilon}\sum _{i = 1}^{\infty} |r_{n,i}-r_{n+1,i}|\Biggr] \\ &{} + |\beta_{n+1}-\beta_{n}|\Vert x_{n}\Vert + a_{0}|\beta_{n+1}-\beta_{n}|\Vert u_{n}\Vert +|\beta_{n+1}-\beta_{n}|\Biggl\Vert \sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert \\ \leq&\Vert x_{n+1}-x_{n}\Vert + \Vert x_{n} \Vert +\Vert x_{n+1}\Vert +\Vert \alpha_{n+1}e_{n+1}- \alpha_{n}e_{n}\Vert +\Vert e_{n+1}-e_{n} \Vert \\ &{}+|\beta_{n+1}-\beta_{n}|\Biggl\Vert \sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert +|\beta_{n+1}-\beta_{n}|\Vert x_{n} \Vert +a_{0}|\beta_{n+1}-\beta_{n}|\Vert u_{n}\Vert \\ &{} +\frac{2M_{2}}{\varepsilon}\beta_{n+1}\sum_{i = 1}^{\infty} |r_{n,i}-r_{n+1,i}|. \end{aligned}$$
(3.8)
Thus in view of (3.8), we have
$$\begin{aligned} \Vert w_{n+1}-w_{n}\Vert \leq& (k\mu_{n+1}+ \gamma_{n+1}+\delta_{n+1})\Vert x_{n+1}-x_{n} \Vert +|\mu_{n+1}-\mu _{n}|\bigl\Vert f(x_{n}) \bigr\Vert \\ &{}+|\gamma_{n+1}-\gamma_{n}|\Vert x_{n}\Vert +\delta_{n+1}\Vert x_{n}\Vert +\delta_{n+1} \Vert x_{n+1}\Vert +|\delta_{n+1}-\delta_{n}| \Vert v_{n}\Vert \\ &{} + \delta_{n+1}\Vert e_{n+1}-e_{n}\Vert + \delta_{n+1}\Vert \alpha_{n+1}e_{n+1}-\alpha _{n}e_{n}\Vert +\delta_{n+1}|\beta_{n+1}- \beta_{n}|\Vert x_{n}\Vert \\ &{}+\delta_{n+1}|\beta_{n+1}-\beta_{n}|\Biggl\Vert \sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert +\delta_{n+1}a_{0}|\beta_{n+1}-\beta _{n}|\Vert u_{n}\Vert \\ &{}+\delta_{n+1}\beta_{n+1}\frac{2M_{2}}{\varepsilon}\sum _{i = 1}^{\infty }|r_{n,i}-r_{n+1,i}| \\ \leq&\bigl(1-(1-k)\mu_{n+1}\bigr)\Vert x_{n+1}-x_{n} \Vert \\ &{}+2M_{2}\delta_{n+1} + M_{2}\bigl(| \mu_{n+1}-\mu_{n}|+|\gamma_{n+1}-\gamma_{n}|+| \delta_{n+1}-\delta _{n}|+3|\beta_{n+1}- \beta_{n}|\bigr) \\ &{}+\Vert e_{n+1}-e_{n}\Vert + \Vert \alpha_{n+1}e_{n+1}-\alpha_{n}e_{n}\Vert \\ &{}+ \delta_{n+1}\beta_{n+1}\frac {2M_{2}}{\varepsilon}\sum _{i = 1}^{\infty}|r_{n,i}-r_{n+1,i}|. \end{aligned}$$
(3.9)
Using Lemma 2.4, we have from (3.9) \(\lim_{n \rightarrow \infty} \|x_{n} - w_{n}\| = 0\) and then \(\lim_{n \rightarrow\infty} \|x_{n+1} - x_{n} \| = 0\).
Step 3. \(\lim_{n \rightarrow\infty} \|x_{n} - u_{n}\| = 0\) and \(\lim_{n \rightarrow\infty} \|u_{n} - (a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}})u_{n}\| = 0\).
We compute the following:
$$\begin{aligned} \Vert v_{n+1}-v_{n}\Vert \leq&(1-\beta_{n+1}) \Vert x_{n+1}-x_{n}\Vert + |\beta_{n+1}- \beta_{n}|\Vert x_{n}\Vert \\ &{} +\beta_{n+1}\Biggl\Vert \Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n+1,i}}^{A_{i}} \Biggr)u_{n+1} - \Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}\Biggr\Vert \\ &{}+ |\beta_{n+1}-\beta_{n}| \Biggl\Vert \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}\Biggr\Vert \\ \leq&(1-\beta_{n+1})\Vert x_{n+1}-x_{n}\Vert + 2|\beta_{n+1}-\beta_{n}|M_{2} \\ &{}+\Biggl\Vert \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n+1,i}}^{A_{i}} \Biggr)u_{n+1} - \Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}\Biggr\Vert . \end{aligned}$$
Using the result of Step 2 and Lemma 2.4, we have
$$ \lim_{n \rightarrow\infty} \Biggl\Vert \Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}-v_{n}\Biggr\Vert = 0. $$
(3.10)
Since
$$\Biggl\Vert \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}-v_{n}\Biggr\Vert = (1-\beta_{n}) \Biggl\Vert x_{n} - \Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}\Biggr\Vert $$
and \(0 < \liminf_{n \rightarrow\infty}\beta_{n} \leq \limsup_{n \rightarrow\infty}\beta_{n} <1\), (3.10) implies that
$$ \lim_{n \rightarrow\infty}\Biggl\Vert x_{n} - \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}\Biggr\Vert = 0. $$
(3.11)
Moreover,
$$\|u_{n} - x_{n}\| = \bigl\Vert Q_{C}\bigl[(1- \alpha_{n}) (x_{n}+e_{n})\bigr]-Q_{C}x_{n} \bigr\Vert \leq \alpha_{n}\|x_{n}\|+ (1- \alpha_{n})\|e_{n}\|, $$
then
$$ \lim_{n\rightarrow\infty}\|x_{n} - u_{n}\| = 0. $$
(3.12)
Noticing (3.11) and (3.12), we have
$$ \lim_{n \rightarrow \infty}\Biggl\Vert u_{n} - \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n} \Biggr\Vert = 0. $$
(3.13)
Step 4. \(\omega(x_{n})\subset D\), where \(\omega(x_{n})\) is the set of all of the weak limit points of \(\{x_{n}\}\).
Since \(\{x_{n}\}\) is bounded, there exists a subsequence of \(\{x_{n}\}\), which is denoted by \(\{x_{n_{k}}\}\), such that \(x_{n_{k}} \rightharpoonup q_{0}\), as \(k \rightarrow\infty\). From (3.12), we have \(u_{n_{k}} \rightharpoonup q_{0}\), as \(k \rightarrow\infty\). Then Lemma 2.2(ii) implies that
$$ \limsup_{k \rightarrow\infty} \Phi\bigl(\Vert u_{n_{k}}-x\Vert \bigr) = \limsup_{k \rightarrow\infty} \Phi\bigl(\Vert u_{n_{k}}- q_{0}\Vert \bigr)+ \Phi\bigl(\Vert q_{0}-x\Vert \bigr),\quad \forall x \in E. $$
(3.14)
Lemma 3.1, Lemma 2.2(i), and (3.13) imply that
$$\begin{aligned}& \limsup_{k \rightarrow\infty} \Phi\Biggl(\Biggl\Vert u_{n_{k}}- \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n_{k},i}}^{A_{i}} \Biggr)q_{0}\Biggr\Vert \Biggr) \\& \quad \leq \limsup_{k \rightarrow\infty} \Phi\Biggl(\Biggl\Vert \sum _{i = 1}^{\infty}a_{i}J_{r_{n_{k},i}}^{A_{i}}u_{n_{k}}- \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n_{k},i}}^{A_{i}} \Biggr)q_{0}+a_{0}u_{n_{k}}\Biggr\Vert \Biggr) \\& \qquad {}+ \limsup_{k \rightarrow\infty} \Biggl\langle (1-a_{0})u_{n_{k}}- \sum_{i = 1}^{\infty}a_{i}J_{r_{n_{k},i}}^{A_{i}}u_{n_{k}}, J_{\varphi}\Biggl(u_{n_{k}}-\Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n_{k},i}}^{A_{i}} \Biggr)q_{0}\Biggr)\Biggr\rangle \\& \quad \leq \limsup_{k \rightarrow\infty} \Phi\bigl(\Vert u_{n_{k}}-q_{0}\Vert \bigr). \end{aligned}$$
(3.15)
From (3.14) and (3.15), we know that \(\Phi(\|(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n_{k},i}}^{A_{i}})q_{0}-q_{0}\|)\leq0\), which implies that
$$a_{0}q_{0}+\sum_{i = 1}^{\infty}a_{i}J_{r_{n_{k},i}}^{A_{i}}q_{0} = q_{0}. $$
Then Lemma 3.1 ensures that \(q_{0} \in D\).
Step 5. \(x_{n} \rightharpoonup q_{0}\), as \(n \rightarrow\infty\), where \(q_{0}\in D\) is the unique element which satisfies (3.2).
Now, we define \(h(y) = \limsup_{n \rightarrow\infty}\Phi(\|x_{n} - y\|)\), for \(y \in D\). Then \(h(y) : D \rightarrow R^{+}\) is proper, strictly convex, lower-semi-continuous, and \(h(y) \rightarrow +\infty\), as \(\|y\| \rightarrow+\infty\). Therefore, there exists a unique element \(q_{0} \in D\) such that \(h(q_{0}) = \min_{y \in D}h(y)\). That is, \(q_{0}\) satisfies (3.2).
Next, we shall show that \(x_{n} \rightharpoonup q_{0}\), as \(n \rightarrow\infty\).
In fact, suppose there exists a subsequence \(\{x_{n_{m}}\}\) of \(\{x_{n}\}\) (for simplicity, we still denote it by \(\{x_{n}\}\)) such that \(x_{n} \rightharpoonup v_{0}\), as \(n \rightarrow\infty\), then \(v_{0} \in D\) in view of Step 4. Using Lemma 2.2(ii), \(h(q_{0}) = h(v_{0}) + \Phi(\|v_{0} - q_{0}\|)\), which implies that \(\Phi(\|v_{0} - q_{0}\|)= 0\), and then \(v_{0} = q_{0}\).
If there exists another subsequence \(\{x_{n_{k}}\}\) of \(\{x_{n}\}\) such that \(x_{n_{k}} \rightharpoonup p_{0}\), as \(k \rightarrow \infty\). Then repeating the above process, we have \(p_{0} = q_{0}\).
Since all of the weakly convergent subsequences of \(\{x_{n}\}\) converge to the same element \(q_{0}\), the whole sequence \(\{x_{n}\}\) converges weakly to \(q_{0}\). Combining the results of Steps 2 and 3, \(u_{n} \rightharpoonup q_{0}\), \(w_{n} \rightharpoonup q_{0}\), as \(n \rightarrow\infty\).
This completes the proof. □
Remark 3.1
Compared to the work in [20], the smoothness of E is not needed. The iterative algorithm (3.1) is more general than those discussed in [5, 9, 17–21].
Remark 3.2
The properties of the function Φ defined by (1.1) are widely used in the proof of Steps 4 and 5, which can be regarded as a new proof technique compared to the existing work.
Remark 3.3
Three sequences are proved to be weakly convergent to the common zero point of an infinite family of m-accretive mappings. The characteristic of the weakly convergent point \(q_{0}\) of \(\{x_{n}\}\) is presented in Theorem 3.1.
Remark 3.4
The assumptions imposed on the real number sequences in Theorem 3.1 are reasonable if we take \(\alpha_{n} = \frac{1}{n}\), \(\mu_{n} = \frac{n}{n^{2}}\), \(\gamma_{n} = \frac{n^{2} - n -1}{n^{2}}\), \(\delta_{n} = \frac{1}{n^{2}}\), and \(\beta_{n} = \zeta_{n} = \frac{n+1}{2n}\), for \(n \geq1\).
Lemma 3.2
Let
E
be a real uniformly smooth and uniformly convex Banach space. Let
C
be a nonempty, closed, and convex sunny nonexpansive retract of
E, and
\(Q_{C}\)
be the sunny nonexpansive retraction of
E
onto
C. Let
\(T : C \rightarrow C\)
be a nonexpansive mapping with
\(\operatorname{Fix}(T) \neq\emptyset\). Let
\(T_{t} : C \rightarrow C\)
be defined by
\(T_{t} x:= TQ_{C}[(1-t)x]\), \(x \in C\). Then:
-
(i)
\(T_{t}\)
is a contraction and has a fixed point
\(z_{t}\), which satisfies
\(\|z_{t} - Tz_{t}\| \rightarrow0\), as
\(t\rightarrow0\);
-
(ii)
further suppose that
E
has a weakly continuous duality mapping
\(J_{\varphi}\), then
\(\lim_{t\rightarrow0}z_{t} = z_{0} \in \operatorname{Fix}(T)\).
Proof
Lemma 2.7 ensures the result of (i).
To show that (ii) holds, it suffices to show that, for any sequence \(\{t_{n}\}\) such that \(t_{n} \rightarrow0\), we have \(\lim_{n\rightarrow\infty}z_{t_{n}} = z_{0} \in \operatorname{Fix}(T)\).
In fact, the result of (i) implies that there exists \(z_{t} \in \operatorname{Fix}(T)\) such that \(z_{t} = TQ_{C}[(1-t)z_{t}]\), \(t \in(0,1)\). For \(\forall p \in \operatorname{Fix}(T)\), since
$$\|z_{t} -p\| = \bigl\Vert TQ_{C}\bigl[(1-t)z_{t} \bigr] - TQ_{C} p\bigr\Vert \leq\|z_{t} - p -tz_{t}\| \leq(1-t)\|z_{t}-p\|+t\|p\|, $$
\(\{z_{t}\}\) is bounded. Without loss of generality, we may assume that \(z_{t_{n}}\rightharpoonup z_{0}\). Using (i) and Lemma 2.5, we have \(z_{0} \in \operatorname{Fix}(T)\).
Using Lemma 2.2, we have, for \(\forall p \in \operatorname{Fix}(T)\),
$$\begin{aligned} \Phi\bigl(\Vert z_{t} -p\Vert \bigr) =& \Phi\bigl(\bigl\Vert TQ_{C}\bigl[(1-t)z_{t}\bigr] - TQ_{C} p\bigr\Vert \bigr) \\ \leq&\Phi\bigl(\bigl\Vert (1-t)z_{t}-p\bigr\Vert \bigr) \\ \leq&\Phi\bigl(\Vert z_{t} -p\Vert \bigr)-t\bigl\langle z_{t}, J_{\varphi}(z_{t}-p-tz_{t})\bigr\rangle \\ = &\Phi\bigl(\Vert z_{t} -p\Vert \bigr)-t \bigl\langle z_{t}-p-tz_{t}, J_{\varphi}(z_{t}-p-tz_{t}) \bigr\rangle - t\bigl\langle p+tz_{t}, J_{\varphi}(z_{t}-p-tz_{t}) \bigr\rangle , \end{aligned}$$
which implies that
$$\|z_{t} -p -tz_{t}\| \varphi\bigl(\Vert z_{t} -p -tz_{t}\Vert \bigr) \leq\bigl\langle p,J_{\varphi} (p+tz_{t}-z_{t})\bigr\rangle +t \bigl\langle z_{t}, J_{\varphi}(p+tz_{t}-z_{t})\bigr\rangle . $$
In particular,
$$\begin{aligned}& \|z_{t_{n}} -p -{t_{n}}z_{t_{n}}\|\varphi\bigl(\Vert z_{t_{n}} -p -{t_{n}}z_{t_{n}}\Vert \bigr) \\& \quad \leq\bigl\langle p,J_{\varphi }(p+{t_{n}}z_{t_{n}}-z_{t_{n}}) \bigr\rangle + {t_{n}} \bigl\langle z_{t_{n}}, J_{\varphi}(p+{t_{n}}z_{t_{n}}-z_{t_{n}})\bigr\rangle . \end{aligned}$$
Thus
$$\begin{aligned}& \|z_{t_{n}} -z_{0} -{t_{n}}z_{t_{n}}\| \varphi\bigl(\Vert z_{t_{n}} -z_{0} -{t_{n}}z_{t_{n}} \Vert \bigr) \\& \quad \leq\bigl\langle z_{0},J_{\varphi}(z_{0}+{t_{n}}z_{t_{n}}-z_{t_{n}}) \bigr\rangle + {t_{n}} \bigl\langle z_{t_{n}}, J_{\varphi}(z_{0}+{t_{n}}z_{t_{n}}-z_{t_{n}}) \bigr\rangle . \end{aligned}$$
(3.16)
Since E has a weakly continuous duality mapping \(J_{\varphi}\), (3.16) implies that \(z_{t_{n}} -z_{0} -{t_{n}}z_{t_{n}}\rightarrow 0\), as \(n \rightarrow\infty\).
From \(\|z_{t_{n}}-z_{0}\|\leq \|z_{t_{n}}-z_{0}-t_{n}z_{t_{n}}\|+t_{n}\|z_{t_{n}}\|\), we see that \(z_{t_{n}}\rightarrow z_{0}\), as \(n \rightarrow\infty\).
Suppose there exists another sequence \(z_{t_{m}} \rightharpoonup x_{0}\), as \(t_{m} \rightarrow0\) and \(m \rightarrow\infty\). Then from (i) \(\|z_{t_{m}}-Tz_{t_{m}}\| \rightarrow0\) and \(I-T\) being demi-closed at zero, we have \(x_{0} \in \operatorname{Fix}(T)\). Moreover, repeating the above proof, we have \(z_{t_{m}}\rightarrow x_{0}\), as \(m \rightarrow\infty\). Next, we want to show that \(z_{0} = x_{0}\).
Similar to (3.16), we have
$$\begin{aligned}& \|z_{t_{m}} - z_{0} -{t_{m}}z_{t_{m}}\| \varphi\bigl(\Vert z_{t_{m}} - z_{0} -{t_{m}}z_{t_{m}} \Vert \bigr) \\& \quad \leq\bigl\langle z_{0},J_{\varphi}(z_{0}+{t_{m}}z_{t_{m}}-z_{t_{m}}) \bigr\rangle + {t_{m}}\bigl\langle z_{t_{m}}, J_{\varphi}(z_{0}+{t_{m}}z_{t_{m}}-z_{t_{m}}) \bigr\rangle . \end{aligned}$$
Letting \(m \rightarrow\infty\),
$$ \|x_{0}-z_{0}\|\varphi\bigl(\Vert x_{0}-z_{0} \Vert \bigr) \leq\bigl\langle z_{0}, J_{\varphi}(z_{0} -x_{0})\bigr\rangle . $$
(3.17)
Interchanging \(x_{0}\) and \(z_{0}\) in (3.17), we obtain
$$ \|z_{0}-x_{0}\|\varphi\bigl(\Vert z_{0}-x_{0} \Vert \bigr) \leq\bigl\langle x_{0}, J_{\varphi}(x_{0} -z_{0})\bigr\rangle . $$
(3.18)
Then (3.17) and (3.18) ensure
$$2\|x_{0}-z_{0}\|\varphi\bigl(\Vert x_{0}-z_{0} \Vert \bigr) \leq\bigl\langle x_{0} - z_{0}, J_{\varphi}(x_{0}-z_{0})\bigr\rangle = \|x_{0} - z_{0} \|\varphi\bigl(\Vert x_{0}-z_{0} \Vert \bigr), $$
which implies that \(x_{0} = z_{0}\).
Therefore, \(\lim_{t\rightarrow0}z_{t} = z_{0} \in \operatorname{Fix}(T)\).
This completes the proof. □
Remark 3.5
Compared to the proof of Lemma 2.7 in [20], a different method is used in the proof of the result (ii) in Lemma 3.2.
Theorem 3.2
Further suppose that
E
is real uniformly convex and uniformly smooth and (vii) \(\sum_{n=1}^{\infty}(1-\zeta_{n})\alpha_{n}\beta_{n}\delta_{n} = +\infty\); (viii) \(\mu_{n} = o(\alpha_{n}\beta_{n}\delta_{n})\). The other restrictions are the same as those in Theorem
3.1, then the iterative sequence
\(\{x_{n}\}\)
generated by (3.1) converges strongly to
\(p_{0} \in D\).
Proof
We shall split the proof into six steps. The proofs of Steps 1, 2, and 3 are the same as those in Theorem 3.1.
Step 4. \(\limsup_{n\rightarrow+\infty}\langle p_{0}, J_{\varphi}(p_{0}-x_{n})\rangle\leq0\), where \(p_{0}\) is an element in D.
From Lemma 3.2, we know that there exists \(y_{t} \in C\) such that
$$y_{t} = a_{0}Q_{C}\bigl[(1-t)y_{t} \bigr]+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}Q_{C} \bigl[(1-t)y_{t}\bigr] $$
for \(t \in (0,1)\). Moreover, \(y_{t} \rightarrow p_{0} \in D\), as \(t \rightarrow 0\).
Since \(\|y_{t}\|\leq\|y_{t} - p_{0} \|+\|p_{0}\|\), \(\{y_{t}\}\) is bounded. Using Lemma 2.2, we have
$$\begin{aligned} \Phi\bigl(\Vert y_{t} - x_{n}\Vert \bigr) \leq&\Phi \bigl(\bigl\Vert (1-t)y_{t}-x_{n}\bigr\Vert \bigr) \\ &{}+ \Biggl\langle \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)x_{n}-x_{n}, J_{\varphi}(y_{t}-x_{n}) \Biggr\rangle \\ \leq&\Phi\bigl(\Vert y_{t}-x_{n}\Vert \bigr) - t \bigl\langle y_{t}, J_{\varphi}\bigl[(1-t)y_{t} -x_{n}\bigr]\bigr\rangle \\ &{}+ K_{1}\Biggl\Vert \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)x_{n}-x_{n}\Biggr\Vert , \end{aligned}$$
where \(K_{1} = \sup \{\varphi(\|y_{t} - x_{n}\|): n \geq1, t > 0\}\) and from the result of Step 1 we know that \(K_{1}\) is a positive constant.
Thus \(\langle y_{t}, J_{\varphi}[(1-t)y_{t} -x_{n}]\rangle\leq \frac{K_{1}}{t}\|(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}})x_{n}-x_{n}\|\). Noticing (3.12) and (3.13), we have
$$\begin{aligned}& \Biggl\Vert \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)x_{n}-x_{n}\Biggr\Vert \\& \quad \leq\Biggl\Vert \Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)x_{n}-\Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}\Biggr\Vert \\& \qquad {}+\Biggl\Vert \Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}-u_{n}\Biggr\Vert +\Vert u_{n}-x_{n} \Vert \\& \quad \leq2\Vert x_{n} - u_{n}\Vert +\Biggl\Vert \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}-u_{n}\Biggr\Vert \rightarrow0, \end{aligned}$$
as \(n \rightarrow\infty\). Therefore,
$$\lim_{t \rightarrow0}\limsup_{n\rightarrow+\infty}\bigl\langle y_{t}, J_{\varphi}\bigl[(1-t)y_{t} -x_{n} \bigr]\bigr\rangle \leq0. $$
From the assumption on \(J_{\varphi}\) and the following fact:
$$\begin{aligned} \bigl\langle p_{0}, J_{\varphi}(p_{0} - x_{n})\bigr\rangle =& \bigl\langle p_{0}, J_{\varphi}(p_{0} - x_{n}) - J_{\varphi} \bigl[(1-t)y_{t} -x_{n}\bigr]\bigr\rangle \\ &{} + \bigl\langle p_{0} - y_{t}, J_{\varphi} \bigl[(1-t)y_{t} -x_{n}\bigr]\bigr\rangle + \bigl\langle y_{t}, J_{\varphi}\bigl[(1-t)y_{t} -x_{n} \bigr]\bigr\rangle , \end{aligned}$$
we have \(\limsup_{n\rightarrow+\infty}\langle p_{0}, J_{\varphi}(p_{0} - x_{n})\rangle\leq0\).
Then
$$\begin{aligned}& \limsup_{n \rightarrow\infty}\bigl\langle p_{0}, J_{\varphi } \bigl[p_{0}-x_{n}-(1-\alpha_{n})e_{n} + \alpha_{n} x_{n}\bigr]\bigr\rangle \\& \quad \leq \limsup_{n \rightarrow\infty}\bigl\langle p_{0}, J_{\varphi}\bigl[p_{0}-x_{n}-(1-\alpha_{n})e_{n} + \alpha_{n} x_{n}\bigr]-J_{\varphi}(p_{0}-x_{n}) \bigr\rangle + \limsup_{n \rightarrow\infty}\bigl\langle p_{0}, J_{\varphi}(p_{0}-x_{n})\bigr\rangle \\& \quad = \limsup_{n \rightarrow\infty}\bigl\langle p_{0}, J_{\varphi}(p_{0}-x_{n})\bigr\rangle \leq0. \end{aligned}$$
(3.19)
Step 5. Φ defined by (1.1) satisfies \(\Phi(kt) \leq k \Phi(t)\), for \(t \in[0, +\infty)\), where \(k \in[0,1]\).
In fact, let \(F(t) = \int_{0}^{kt} \varphi(s) \,ds - k \int_{0}^{t}\varphi(s)\,ds\), for \(t \in[0,+\infty)\). Then \(F'(t) = k \varphi(kt) - k\varphi(t) \leq0\), since \(k \in(0,1)\) and the gauge function φ is increasing. Thus F is decreasing on \([0,+\infty)\). That is, \(F(t) \leq F(0)\), for \(t \in[0,+\infty)\). Then \(\int_{0}^{kt}\varphi(s) \,ds \leq k \int_{0}^{t} \varphi(s) \,ds\), for \(t \in[0,+\infty)\), which implies that \(\Phi(kt) \leq k\Phi(t)\), for \(t \in[0,+\infty)\).
Step 6. \(x_{n} \rightarrow p_{0}\), as \(n \rightarrow+\infty\), where \(p_{0} \in D\) is the same as that in Step 4.
Since Φ is convex, we have
$$ \Phi\bigl(\Vert x_{n+1} - p_{0}\Vert \bigr)\leq(1- \zeta_{n}) \Phi\bigl(\Vert w_{n}-p_{0}\Vert \bigr)+\zeta_{n} \Phi\bigl(\Vert x_{n}-p_{0} \Vert \bigr). $$
(3.20)
Using Lemma 2.2 and the result of Step 5, we have
$$\begin{aligned} \Phi\bigl(\Vert w_{n} - p_{0}\Vert \bigr) \leq& \mu_{n} \Phi\bigl(\bigl\Vert f(x_{n})-p_{0}\bigr\Vert \bigr)+\gamma_{n} \Phi\bigl(\Vert x_{n}-p_{0} \Vert \bigr)+\delta_{n} \Phi\bigl(\Vert v_{n} - p_{0}\Vert \bigr) \\ \leq&(\mu_{n} k +\gamma_{n})\Phi\bigl(\Vert x_{n}-p_{0}\Vert \bigr)+ \mu_{n} \bigl\langle f(p_{0}) - p_{0}, J_{\varphi} \bigl(f(x_{n}) - p_{0}\bigr) \bigr\rangle \\ &{}+\delta_{n} \Phi\bigl(\Vert v_{n} - p_{0} \Vert \bigr). \end{aligned}$$
(3.21)
Similarly, we have
$$\begin{aligned} \Phi\bigl(\Vert v_{n} - p_{0}\Vert \bigr) \leq&(1- \beta_{n}) \Phi\bigl(\Vert x_{n}-p_{0}\Vert \bigr)+\beta_{n} \Phi\bigl(\Vert u_{n} - p_{0} \Vert \bigr) \\ \leq&(1-\beta_{n}) \Phi\bigl(\Vert x_{n}-p_{0} \Vert \bigr)+\beta_{n} (1-\alpha_{n})\Phi\bigl(\Vert x_{n}-p_{0}\Vert \bigr) \\ &{}+ \beta_{n} \bigl\langle (1-\alpha_{n})e_{n} - \alpha_{n} p_{0}, J_{\varphi} \bigl((1- \alpha_{n}) (x_{n}+e_{n})-p_{0}\bigr) \bigr\rangle \\ =&(1-\beta_{n} \alpha_{n})\Phi\bigl(\Vert x_{n}-p_{0}\Vert \bigr) \\ &{}+ \beta_{n} (1-\alpha_{n})\bigl\langle e_{n}, J_{\varphi} \bigl((1-\alpha_{n}) (x_{n}+e_{n})-p_{0} \bigr)\bigr\rangle \\ &{}+\beta_{n} \alpha_{n} \bigl\langle p_{0}, J_{\varphi} \bigl(p_{0}-x_{n}-(1-\alpha_{n})e_{n}+ \alpha_{n}x_{n}\bigr)\bigr\rangle . \end{aligned}$$
(3.22)
Let \(K_{2} = \sup \{\varphi(\|(1-\alpha_{n})(x_{n}+e_{n})-p_{0}\|), \varphi(\|f(x_{n})-p_{0}\|): n \geq1\}\). Then \(K_{2}\) is a positive constant. Using (3.20)-(3.22), we have
$$\begin{aligned} \Phi\bigl(\Vert x_{n+1}-p_{0}\Vert \bigr) \leq&\bigl\{ 1-(1-\zeta_{n})\bigl[\mu_{n}(1-k)+\alpha_{n} \beta_{n} \delta_{n}\bigr]\bigr\} \Phi\bigl(\Vert x_{n}-p_{0}\Vert \bigr) \\ &{} +(1-\zeta_{n})\beta_{n}(1-\alpha_{n}) \delta_{n}\bigl\langle e_{n}, J_{\varphi}\bigl[(1- \alpha_{n}) (x_{n}+e_{n})-p_{0}\bigr] \bigr\rangle \\ &{}+\alpha_{n}\beta_{n}\delta_{n}(1- \zeta_{n})\bigl\langle p_{0},J_{\varphi } \bigl[p_{0}-x_{n}-(1-\alpha_{n})e_{n} + \alpha_{n} x_{n}\bigr]\bigr\rangle \\ &{} + (1-\zeta_{n})\mu_{n} \bigl\langle f(p_{0})-p_{0}, J_{\varphi}\bigl(f(x_{n}) - p_{0} \bigr)\bigr\rangle \\ \leq& \bigl[1-\alpha_{n}\beta_{n}\delta_{n}(1- \zeta_{n})\bigr]\Phi\bigl(\Vert x_{n}-p_{0} \Vert \bigr) \\ &{}+(1-\zeta_{n}) (1-\alpha_{n}) \beta_{n} \delta_{n}K_{2} \Vert e_{n} \Vert \\ &{}+\alpha_{n}\beta_{n}\delta_{n}(1- \zeta_{n})\bigl\langle p_{0},J_{\varphi} \bigl[p_{0}-x_{n}-(1-\alpha_{n})e_{n} + \alpha_{n} x_{n}\bigr]\bigr\rangle \\ &{} +(1-\zeta_{n})\mu_{n} \bigl\langle f(p_{0})-p_{0},J_{\varphi} \bigl(f(x_{n})-p_{0}\bigr) \bigr\rangle . \end{aligned}$$
(3.23)
Let \(c_{n} = \alpha_{n}\beta_{n}\delta_{n}(1-\zeta_{n})\), then (3.23) reduces to \(\Phi(\|x_{n+1}-p_{0}\|) \leq(1-c_{n})\Phi(\|x_{n}-p_{0}\|) + c_{n} \{\langle p_{0}, J_{\varphi}[p_{0}-x_{n}-(1-\alpha_{n})e_{n} + \alpha_{n} x_{n}]\rangle+\frac{\mu_{n}}{\alpha_{n}\beta_{n}\delta_{n}}K_{2}\| f(p_{0})-p_{0}\|\} + K_{2}\|e_{n}\|\).
From Lemma 2.3, the assumptions (vii) and (viii), (3.19), and (3.23), we know that \(\Phi(\|x_{n}-p_{0}\|) \rightarrow0\), which implies that \(x_{n} \rightarrow p_{0}\), as \(n \rightarrow+\infty\). Combining the results in Steps 2 and 3, we can also know that \(w_{n} \rightarrow p_{0}\), \(u_{n} \rightarrow p_{0}\), as \(n \rightarrow +\infty\).
This completes the proof. □
Remark 3.6
Actually, the three sequences \(\{x_{n}\}\), \(\{w_{n}\} \), and \(\{u_{n}\}\) are proved to be strongly convergent to the common zero point \(p_{0}\) of an infinite family of m-accretive mappings. The \(p_{0}\) in Theorem 3.2 also satisfies (3.2).
Remark 3.7
The assumptions imposed on the real sequences in Theorem 3.2 are reasonable if we take \(\alpha_{n} = \delta_{n} = \frac{1}{n^{\frac{1}{3}}}\), \(\mu_{n} = \frac{1}{n^{2}}\), \(\gamma_{n} = 1-\frac{1}{n^{2}}-\frac{1}{n^{\frac{1}{3}}}\), \(\zeta_{n} = \frac{n+1}{2n}\), and \(\beta_{n} = \frac{1+n^{\frac{1}{3}}}{2n^{\frac{1}{3}}}\), for \(n \geq1\).