In this section, we obtain a common fixed point result for mappings satisfying generalized local contractive condition in the setup of dislocated \(A_{b}\)-quasi-metric space X. We start with the following result.
Theorem 2.1
Let
f, g, T, and
S
be self mappings on a dislocated
\(A_{b}\)-quasi-metric space
X
with
\(s\geq1\), \(x_{0}, x_{1}\in X\), \(y_{0}=Sx_{0}=gx_{1}\), and
\(r>1\). Suppose that
\(S(Y)\subseteq g(Y)\), \(T(Y)\subseteq f(Y)\), and one of
\(S(Y)\), \(g(Y)\), \(T(Y)\), or
\(f(Y)\)
is a complete subspace of
Y, where
\(Y=\overline{B(y_{0},r)}\). Suppose that there exists
\(\alpha \in [0,\frac{1}{2})\)
such that
\(0\leq\gamma=(n-1)s\alpha<1\)
with
\(0<\frac {\gamma }{1-\gamma}<1\)
and for any
\(x, y\in Y\), we have
$$ A_{b}(Sx,Sx,\ldots,Sx,Ty)\leq\alpha M(x,y) \quad\textit{and}\quad A_{b}(y_{0},y_{0}, \ldots,y_{0},Tx_{1})\leq r(1-h), $$
(2.1)
where
$$\begin{aligned} M(x,y) =&\max \bigl\{ A_{b}(fx,fx,\ldots,fx,gy),A_{b}(fx,fx, \ldots ,fx,Sx),A_{b}(gy,gy,\ldots,gy,Ty),\\ &{} A_{b}(Sx,Sx,\ldots,Sx,gy),A_{b}(fx,fx,\ldots,fx,Ty) \bigr\} . \end{aligned}$$
Then
\((f,S)\)
and
\((g,T)\)
have a unique point of coincidence in
Y. Furthermore, if
\((f,S)\)
and
\((g,T)\)
are weakly compatible, then there exists a unique common fixed point of
f, T, S, and
g
in
Y.
Proof
Since \(T(Y)\subseteq f(Y)\), there exists a point \(x_{2}\) in Y such that \(y_{1}=T(x_{1})=f(x_{2}), \ldots\) , so there exist \(\{x_{k}\}\) and \(\{y_{k}\}\) in Y such that \(y_{2k}=Sx_{2k}=gx_{2k+1} \) and \(y_{2k+1}=Tx_{2k+1}=fx_{2k+2}\) for all k in \(\mathbb{N}_{0}\).
Now we show that \(y_{k}\in Y\) for all \(k\in\mathbb{N}\).
Since \(A_{b}(y_{0},y_{0},\ldots,y_{0},Tx_{1})=A_{b}(y_{0},y_{0},\ldots ,y_{0},y_{1})\leq r(1-h)< r\), it follows that \(y_{1}\in Y\). Suppose that \(\{y_{2},y_{3},\ldots,y_{j}\}\subseteq Y\) for some \(j\in \mathbb{N}\). If \(j=2t\), then by (2.1) we have
$$\begin{aligned} &A_{b}(y_{2t},y_{2t}, \ldots,y_{2t},y_{2t+1}) \\ &\quad=A_{b}(Sx_{2t},Sx_{2t},\ldots,Sx_{2t},Tx_{2t+1}) \\ &\quad\leq{\alpha} \bigl(\max \bigl\{ A_{b}(fx_{2t},fx_{2t}, \ldots ,fx_{2t},gx_{2t+1}),A_{b}(fx_{2t},fx_{2t}, \ldots,fx_{2t},Sx_{2t}), \\ &\qquad{} A_{b}(gx_{2t+1},gx_{2t+1},\ldots ,gx_{2t+1},Tx_{2t+1}),A_{b}(Sx_{2t},Sx_{2t}, \ldots,Sx_{2t},gx_{2t+1}), \\ &\qquad{}A_{b}(fx_{2t},fx_{2t},\ldots,fx_{2t},Tx_{2t+1}) \bigr\} \bigr) \\ &\quad={\alpha} \bigl(\max \bigl\{ A_{b}(y_{2t-1},y_{2t-1}, \ldots ,y_{2t-1},y_{2t}),A_{b}(y_{2t-1},y_{2t-1}, \ldots,y_{2t-1},y_{2t}), \\ &\qquad{}A_{b}(y_{2t},y_{2t},\ldots,y_{2t},y_{2t+1}),A_{b}(y_{2t},y_{2t}, \ldots ,y_{2t},y_{2t}), \\ &\qquad{}A_{b}(y_{2t-1},y_{2t-1},\ldots,y_{2t-1},y_{2t+1}) \bigr\} \bigr) \\ &\quad={\alpha} \bigl(\max \bigl\{ A_{b}(y_{2t-1},y_{2t-1}, \ldots ,y_{2t-1},y_{2t}),A_{b}(y_{2t},y_{2t}, \ldots,y_{2t},y_{2t+1}), \\ &\qquad{}A_{b}(y_{2t-1},y_{2t-1},\ldots,y_{2t-1},y_{2t+1}) \bigr\} \bigr) \\ &\quad\leq{\alpha} \bigl(\max \bigl\{ A_{b}(y_{2t-1},y_{2t-1}, \ldots ,y_{2t-1},y_{2t}),A_{b}(y_{2t},y_{2t}, \ldots,y_{2t},y_{2t+1}), \\ &\qquad{}s \bigl[(n-1)A_{b}(y_{2t-1},y_{2t-1},\ldots ,y_{2t-1},y_{2t})+A_{b}(y_{2t},y_{2t}, \ldots,y_{2t},y_{2t+1}) \bigr] \bigr\} \bigr) \\ &\quad={\alpha}s \bigl[(n-1)A_{b}(y_{2t-1},y_{2t-1}, \ldots ,y_{2t-1},y_{2t})+A_{b}(y_{2t},y_{2t}, \ldots,y_{2t},y_{2t+1}) \bigr] \\ &\quad\leq{\alpha}s(n-1) \bigl[A_{b}(y_{2t-1},y_{2t-1}, \ldots ,y_{2t-1},y_{2t})+A_{b}(y_{2t},y_{2t}, \ldots,y_{2t},y_{2t+1}) \bigr]. \end{aligned}$$
Thus, we obtain that \(A_{b}(y_{2t},y_{2t},\ldots,y_{2t},y_{2t+1})\leq h(A_{b}(y_{2t-1},y_{2t-1},\ldots,y_{2t-1},y_{2t}))\), where \(h=\frac {\gamma}{1-\gamma}\). Similarly, for \(j=2t+1\), we have \(A_{b}(y_{2t+1},y_{2t+1},\ldots,y_{2t+1},y_{2t+2})\leq hA_{b}(y_{2t},y_{2t},\ldots, y_{2t},y_{2t+1})\). Thus,
$$ A_{b}(y_{t},y_{t},\ldots,y_{t},y_{t+1}) \leq hA_{b}(y_{t-1},y_{t-1},\ldots,y_{t-1},y_{t})\quad \mbox{for each } t\in \mathbb{N}. $$
Note that
$$\begin{aligned} A_{b}(y_{t},y_{t},\ldots,y_{t},y_{t+1}) \leq &h A_{b}(y_{t-1},y_{t-1},\ldots,y_{t-1},y_{t}) \\ \leq&h^{2}A_{b}(y_{t-2},y_{t-2}, \ldots,y_{t-2},y_{t-1}) \\ \vdots& \\ \leq&h^{t}A_{b}(y_{0},y_{0}, \ldots,y_{0},y_{1}) \quad\mbox{for each } t\in \mathbb{N}. \end{aligned}$$
By Lemma 1.7 we have
$$\begin{aligned} A_{b}(y_{0},y_{0},\ldots,y_{0},y_{t+1}) \leq &s \bigl[(n-1)A_{b}(y_{0},y_{0}, \ldots,y_{0},y_{1}) \\ &{}+h(n-1) A_{b}(y_{0},y_{0}, \ldots,y_{0},y_{1}) \\ &{}+h^{2}(n-1)A_{b}(y_{0},y_{0}, \ldots,y_{0},y_{1}) \\ &{}\vdots \\ &{}+(n-1)h^{t-1}A_{b}(y_{0},y_{0}, \ldots,y_{0},y_{1}) +h^{t}A_{b}(y_{0},y_{0}, \ldots,y_{0},y_{1}) \bigr] \\ \leq&s(n-1) \bigl(h^{0}+h^{1}+h^{2}+\cdots +h^{t} \bigr)A_{b}(y_{0},y_{0}, \ldots,y_{0},y_{1}) \\ =&s(n-1)\frac{1-h^{t+1}}{1-h}A_{b}(y_{0},y_{0}, \ldots,y_{0},y_{1}) \\ \leq&r\quad \mbox{for each } t\in\mathbb{N}. \end{aligned}$$
That is, \(y_{t+1}\in Y\). By induction, \(\{y_{k}\}\subseteq Y\). Now we show that \(\{y_{k}\}\) is a Cauchy sequence in Y.
For this, let \(m,k\in\mathbb{N}\) with \(m>k\). By Lemma 1.7 we have
$$\begin{aligned} A_{b}(y_{k},y_{k},\ldots,y_{k},y_{m}) \leq &s \bigl[(n-1)A_{b}(y_{k},y_{k}, \ldots,y_{k},y_{k+1}) \\ &{}+(n-1)A_{b}(y_{k+1},y_{k+1},\ldots,y_{k+1},y_{k+2}) \\ &{}\vdots \\ &{}+(n-1)A_{b}(y_{m-2},y_{m-2},\ldots,y_{m-2},y_{m-1}) \\ &{}+A_{b}(y_{m-1},y_{m-1},\ldots,y_{m-1},y_{m}) \bigr] \\ \leq&s \bigl[(n-1)h^{k}A_{b}(y_{0},y_{0}, \ldots,y_{0},y_{1}) \\ &{}+(n-1)h^{k+1}A_{b}(y_{0},y_{0}, \ldots,y_{0},y_{1}) \\ &{}\vdots \\ &{}+(n-1)h^{m-2}A_{b}(y_{0},y_{0}, \ldots,y_{0},y_{1}) +h^{m-1}A_{b}(y_{0},y_{0}, \ldots,y_{0},y_{1}) \bigr] \\ \leq&(n-1)s \bigl(h^{k}+h^{k+1}+\cdots +h^{m-1} \bigr)A_{b}(y_{0},y_{0},\ldots,y_{0},y_{1}) \\ \leq&(n-1)s \bigl(h^{k}+h^{k+1}+\cdots \bigr)A_{b}(y_{0},y_{0}, \ldots ,y_{0},y_{1}) \\ =&(n-1)s \biggl(\frac{h^{k}}{1-h} \biggr)A_{b}(y_{0},y_{0}, \ldots,y_{0},y_{1}). \end{aligned}$$
Hence, \(\lim_{k,m\rightarrow\infty}A_{b}(y_{k},y_{k},y_{k}, \ldots,y_{k},y_{m})=0\), that is, \(\{y_{k}\}\) is a Cauchy sequence in Y.
Next, we assume that \(T(Y)\) is a complete subspace of Y. We choose a point \(x^{\ast}\) in \(T(Y)\) such that \(\lim_{k\rightarrow\infty} y_{k}=x^{\ast}\). Then it follows that
$$ \lim_{{k}\rightarrow\infty}Sx_{2k}=\lim_{{k}\rightarrow\infty }gx_{2k+1}= \lim_{{k}\rightarrow\infty}Tx_{2k+1}=\lim_{{k}\rightarrow \infty}fx_{2k+2}=x^{\ast}. $$
Since \(T(Y)\subseteq f(Y)\), there exists a point y in Y such that \(f(y)=x^{\ast}\). It follows from (2.1) that
$$\begin{aligned} A_{b} \bigl(Sy,Sy,\ldots,Sy,x^{\ast} \bigr) \leq& (n-1)sA_{b}(Sy,Sy,\ldots,Sy,Tx_{2k+1})\\ &{}+sA_{b} \bigl(Tx_{2k+1},Tx_{2k+1}, \ldots,Tx_{2k+1},x^{\ast} \bigr) \\ \leq&\gamma \bigl(M(y,x_{2k+1}) \bigr)+sA_{b} \bigl(Tx_{2k+1},Tx_{2k+1},\ldots,Tx_{2k+1},x^{\ast} \bigr), \end{aligned}$$
where
$$\begin{aligned} M(y,x_{2k+1}) =&\max \bigl\{ A_{b}(fy,fy,\ldots ,fy,gx_{2k+1}),A_{b}(fy,fy,\ldots,fy,Sy),\\ &{}A_{b}(gx_{2k+1},gx_{2k+1},\ldots ,gx_{2k+1},Tx_{2k+1}),A_{b}(Sy,Sy, \ldots,Sy,gx_{2k+1}),\\ &{}A_{b}(fy,fy,\ldots,fy,Tx_{2k+1}) \bigr\} \\ =&\max \bigl\{ A_{b} \bigl(x^{\ast},x^{\ast}, \ldots,x^{\ast },gx_{2k+1} \bigr),A_{b} \bigl(x^{\ast },x^{\ast},\ldots,x^{\ast},Sy \bigr),\\ &{}A_{b}(gx_{2k+1},gx_{2k+1},\ldots ,gx_{2k+1},Tx_{2k+1}),A_{b}(Sy,Sy, \ldots,Sy,gx_{2k+1}),\\ &{}A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},Tx_{2k+1} \bigr) \bigr\} . \end{aligned}$$
We consider the following cases:
(i) If \(M(y,x_{2k+1})=A_{b}(x^{\ast},x^{\ast},\ldots,x^{\ast },gx_{2k+1})\), then we have
$$\begin{aligned} &A_{b} \bigl(Sy,Sy,\ldots,Sy,x^{\ast} \bigr) \\ &\quad\leq\gamma A_{b} \bigl(x^{\ast},x^{\ast}, \ldots,x^{\ast },gx_{2k+1} \bigr)+sA_{b} \bigl(Tx_{2k+1},Tx_{2k+1},\ldots,Tx_{2k+1},x^{\ast} \bigr). \end{aligned}$$
Taking the limit as \(k\rightarrow\infty\), we have
$$ A_{b} \bigl(Sy,Sy,\ldots,Sy,x^{\ast} \bigr)\leq\gamma A_{b} \bigl(x^{\ast},x^{\ast },\ldots,x^{\ast},x^{\ast} \bigr)=0. $$
Hence, \(A_{b}(Sy,Sy,\ldots,Sy,x^{\ast})=A_{b}(x^{\ast},x^{\ast },\ldots,x^{\ast },Sy)=0\) implies that \(Sy=x^{\ast}\).
(ii) If \(M(y,x_{2k+1})=A_{b}(x^{\ast},x^{\ast},\ldots,x^{\ast},Sy)\), then we obtain that
$$\begin{aligned} &A_{b} \bigl(Sy,Sy,\ldots,Sy,x^{\ast} \bigr) \\ &\quad\leq\gamma A_{b} \bigl(Sy,Sy,\ldots,Sy,x^{\ast } \bigr)+sA_{b} \bigl(Tx_{2k+1},Tx_{2k+1}, \ldots,Tx_{2k+1},x^{\ast} \bigr). \end{aligned}$$
Taking the limit as \(k\rightarrow\infty\), we have
$$ A_{b} \bigl(Sy,Sy,\ldots,Sy,x^{\ast} \bigr)\leq\gamma A_{b} \bigl(Sy,Sy,\ldots ,Sy,x^{\ast} \bigr), $$
which further implies that \(Sy=x^{\ast}\).
(iii) When \(M(y,x_{2k+1})=A_{b}(gx_{2k+1},gx_{2k+1},\ldots ,gx_{2k+1},Tx_{2k+1})\), we have
$$\begin{aligned} A_{b} \bigl(Sy,Sy,\ldots,Sy,x^{\ast} \bigr) \leq&\gamma A_{b}(gx_{2k+1},gx_{2k+1},\ldots,gx_{2k+1},Tx_{2k+1}) \\ &{}+sA_{b} \bigl(Tx_{2k+1},Tx_{2k+1}, \ldots,Tx_{2k+1},x^{\ast} \bigr), \end{aligned}$$
which by taking the limit as \(k\rightarrow\infty\) gives that
$$ A_{b} \bigl(Sy,Sy,\ldots,Sy,x^{\ast} \bigr)\leq\gamma d \bigl(x^{\ast},x^{\ast},\ldots ,x^{\ast },x^{\ast} \bigr)=0, $$
and hence \(Sy=x^{\ast}\).
(iv) If \(M(y,x_{2k+1})=A_{b}(Sy,Sy,\ldots,Sy,gx_{2k+1})\), then we have
$$\begin{aligned} &A_{b} \bigl(Sy,Sy,\ldots,Sy,x^{\ast} \bigr) \\ &\quad\leq\gamma A_{b}(Sy,Sy,\ldots,Sy,gx_{2k+1})+sA_{b} \bigl(Tx_{2k+1},Tx_{2k+1},\ldots ,Tx_{2k+1},x^{\ast} \bigr). \end{aligned}$$
Taking the limit as \(k\rightarrow\infty\), we obtain that
$$ A_{b} \bigl(Sy,Sy,\ldots,Sy,x^{\ast} \bigr)\leq\gamma A_{b} \bigl(Sy,Sy,\ldots ,Sy,x^{\ast} \bigr), $$
which implies that \(Sy=x^{\ast}\).
(v) When \(M(y,x_{2k+1})=A_{b}(x^{\ast},x^{\ast},\ldots,x^{\ast},Tx_{2k+1})\), we have
$$\begin{aligned} &A_{b} \bigl(Sy,Sy,\ldots,Sy,x^{\ast} \bigr)\\ &\quad\leq\gamma A_{b} \bigl(x^{\ast},x^{\ast}, \ldots,x^{\ast },Tx_{2k+1} \bigr)+sA_{b} \bigl(Tx_{2k+1},Tx_{2k+1},\ldots,Tx_{2k+1},x^{\ast} \bigr), \end{aligned}$$
which by taking the limit as \(k\rightarrow\infty\) implies that
$$ A_{b} \bigl(Sy,Sy,\ldots,Sy,x^{\ast} \bigr)\leq\gamma A_{b} \bigl(x^{\ast},x^{\ast },\ldots,x^{\ast},x^{\ast} \bigr), $$
and hence \(Sy=x^{\ast}\).
Thus, in all cases, we have \(Sy=x^{\ast}\), and hence \(Sy=fy=x^{\ast}\) is a unique coincidence point of \((f,S)\) in Y.
Since \(S(Y)\subseteq g(Y)\), we choose a point z in Y such that \(g(z)=x^{\ast}\). Note that
$$\begin{aligned} A_{b} \bigl(Tz,Tz,\ldots,Tz,x^{\ast} \bigr) \leq &(n-1)sA_{b}(Sx_{2k},Sx_{2k},\ldots,Sx_{2k},Tz) \\ &{}+sA_{b} \bigl(Sx_{2k},Sx_{2k}, \ldots,Sx_{2k},x^{\ast} \bigr) \\ \leq&\gamma \bigl(M(x_{2k},z) \bigr)+sA_{b} \bigl(Sx_{2k},Sx_{2k},\ldots ,Sx_{2k},x^{\ast} \bigr), \end{aligned}$$
where
$$\begin{aligned} M(x_{2k},z) =&\max \bigl\{ A_{b}(fx_{2k},fx_{2k}, \ldots,fx_{2k},gz),A_{b}(fx_{2k},fx_{2k}, \ldots ,fx_{2k},Sx_{2k}), \\ &{}A_{b}(gz,gz,\ldots,gz,Tz),A_{b}(Sx_{2k},Sx_{2k}, \ldots,Sx_{2k},gz), \\ &{}A_{b}(fx_{2k},fx_{2k},\ldots,fx_{2k},Tz) \bigr\} \\ =&\max \bigl\{ A_{b} \bigl(x^{\ast},x^{\ast}, \ldots,x^{\ast },fx_{2k} \bigr),A_{b}(fx_{2k},fx_{2k}, \ldots,fx_{2k},Sx_{2k}), \\ &{}A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast },Tz \bigr),A_{b} \bigl(Sx_{2k},Sx_{2k}, \ldots,Sx_{2k},x^{\ast} \bigr), \\ &{}A_{b}(fx_{2k},fx_{2k},\ldots,fx_{2k},Tz) \bigr\} . \end{aligned}$$
We again consider the following cases:
(i) If \(M(x_{2k},z)=A_{b}(x^{\ast},x^{\ast},\ldots,x^{\ast },fx_{2k})\), then we have
$$ A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},Tz \bigr)\leq\gamma A_{b} \bigl(x^{\ast },x^{\ast}, \ldots,x^{\ast },fx_{2k} \bigr)+sA_{b} \bigl(Sx_{2k},Sx_{2k},\ldots,Sx_{2k},x^{\ast} \bigr), $$
which by taking the limit as \(k\rightarrow\infty\) implies \(A_{b}(x^{\ast},x^{\ast },\ldots,x^{\ast},Tz)\leq\gamma A_{b}(x^{\ast},x^{\ast},\ldots ,x^{\ast },x^{\ast})+sA_{b}(x^{\ast},x^{\ast},\ldots,x^{\ast},x^{\ast})\), and hence \(Tz=x^{\ast}\).
(ii) If \(M(x_{2k},z)=A_{b}(fx_{2k},fx_{2k},\ldots,fx_{2k},Sx_{2k})\), then we have
$$\begin{aligned} &A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},Tz \bigr) \\ &\quad\leq\gamma A_{b}(fx_{2k},fx_{2k},\ldots ,fx_{2k},Sx_{2k})+sA_{b} \bigl(Sx_{2k},Sx_{2k}, \ldots,Sx_{2k},x^{\ast} \bigr), \end{aligned}$$
which by taking the limit as \(k\rightarrow\infty\) implies that
$$\begin{aligned} &A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},Tz \bigr) \\ &\quad\leq\gamma A_{b} \bigl(x^{\ast},x^{\ast}, \ldots,x^{\ast},x^{\ast } \bigr)+sA_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},x^{\ast} \bigr), \end{aligned}$$
which further implies that \(Tz=x^{\ast}\).
(iii) If \(M(x_{2k},z)=A_{b}(x^{\ast},x^{\ast},\ldots,x^{\ast},Tz)\), then we have
$$\begin{aligned} &A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},Tz \bigr) \\ &\quad\leq\gamma A_{b} \bigl(x^{\ast},x^{\ast}, \ldots,x^{\ast },Tz \bigr)+sA_{b} \bigl(Sx_{2k},Sx_{2k}, \ldots,Sx_{2k},x^{\ast} \bigr), \end{aligned}$$
which by taking the limit as \(k\rightarrow\infty\) gives
$$ A_{b}\bigl(x^{\ast}, x^{\ast},\ldots,x^{\ast},Tz\bigr) \leq \gamma A_{b} \bigl(x^{\ast}, x^{\ast}, \ldots , x^{\ast}, Tz\bigr) + sA_{b} \bigl(x^{\ast}, x^{\ast}, \ldots , x^{\ast}, x^{\ast}\bigr), $$
and hence \(Tz=x^{\ast}\).
(iv) When \(M(x_{2k},z)=A_{b}(Sx_{2k},Sx_{2k},\ldots,Sx_{2k},x^{\ast })\), we have
$$\begin{aligned} &A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},Tz \bigr) \\ &\quad\leq\gamma A_{b} \bigl(Sx_{2k},Sx_{2k}, \ldots,Sx_{2k},x^{\ast } \bigr)+sA_{b} \bigl(Sx_{2k},Sx_{2k},\ldots,Sx_{2k},x^{\ast} \bigr). \end{aligned}$$
Taking the limit as \(k\rightarrow\infty\), we obtain that
$$\begin{aligned} &A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},Tz \bigr) \\ &\quad\leq\gamma A_{b} \bigl(x^{\ast},x^{\ast}, \ldots,x^{\ast},x^{\ast } \bigr)+sA_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},x^{\ast} \bigr), \end{aligned}$$
and so \(Tz=x^{\ast}\).
(v) If \(M(x_{2k},z)=A_{b}(fx_{2k},fx_{2k},\ldots,fx_{2k},Tz)\), then we have
$$\begin{aligned} &A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},Tz \bigr)\\ &\quad\leq\gamma A_{b}(fx_{2k},fx_{2k}, \ldots,fx_{2k},Tz)+sA_{b} \bigl(Sx_{2k},Sx_{2k}, \ldots ,Sx_{2k},x^{\ast} \bigr), \end{aligned}$$
which by taking the limit as \(k\rightarrow\infty\) gives
$$\begin{aligned} &A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},Tz \bigr) \\ &\quad\leq\gamma A_{b} \bigl(x^{\ast},x^{\ast}, \ldots,x^{\ast },Tz \bigr)+sA_{b} \bigl(x^{\ast },x^{\ast}, \ldots,x^{\ast},x^{\ast} \bigr), \end{aligned}$$
and hence \(Tz=x^{\ast}\).
Thus, in all cases, we have \(Tz=gz=x^{\ast}\), a unique coincidence point of \((g,T)\) in Y.
Suppose that \((f,S)\) is weakly compatible. Then \(Sfy=fSy\) implies that \(Sx^{\ast }=fx^{\ast}\). Note that
$$ A_{b} \bigl(Sx^{\ast},Sx^{\ast},\ldots,Sx^{\ast},x^{\ast} \bigr)=A_{b} \bigl(Sx^{\ast },Sx^{\ast}, \ldots,Sx^{\ast},Tz \bigr)\leq\alpha \bigl(M \bigl(x^{\ast},z \bigr) \bigr), $$
where
$$\begin{aligned} M \bigl(x^{\ast},z \bigr) =&\max \bigl\{ A_{b} \bigl(fx^{\ast},fx^{\ast},\ldots,fx^{\ast },gz \bigr),A_{b} \bigl(fx^{\ast},fx^{\ast}, \ldots,fx^{\ast},Sx^{\ast} \bigr), \\ &{}A_{b}(gz,gz,\ldots,gz,Tz),A_{b} \bigl(Sx^{\ast},Sx^{\ast}, \ldots,Sx^{\ast },gz \bigr), \\ &{}A_{b} \bigl(fx^{\ast},fx^{\ast}, \ldots,fx^{\ast},Tz \bigr) \bigr\} \\ =&\max \bigl\{ A_{b} \bigl(Sx^{\ast},Sx^{\ast}, \ldots,Sx^{\ast},x^{\ast } \bigr),A_{b} \bigl(fx^{\ast},fx^{\ast},\ldots,fx^{\ast},Sx^{\ast} \bigr), \\ &{}A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},x^{\ast} \bigr),A_{b} \bigl(Sx^{\ast },Sx^{\ast}, \ldots,Sx^{\ast},x^{\ast} \bigr), \\ &{}A_{b} \bigl(Sx^{\ast},Sx^{\ast}, \ldots,Sx^{\ast},x^{\ast} \bigr) \bigr\} . \end{aligned}$$
Thus, \(A_{b}(Sx^{\ast},Sx^{\ast},\ldots,Sx^{\ast},x^{\ast})\leq \alpha A_{b}(Sx^{\ast},Sx^{\ast},\ldots,Sx^{\ast},x^{\ast})\) implies that \(x^{\ast }=Sx^{\ast}=fx^{\ast}\).
Similarly, if \((g,T)\) is weakly compatible, then \(Tgz=gTz\) implies that \(Tx^{\ast}=gx^{\ast}\). By (2.1) we have
$$ A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},Tx^{\ast} \bigr)=A_{b} \bigl(Sx^{\ast },Sx^{\ast}, \ldots,Sx^{\ast},Tx^{\ast} \bigr)\leq\alpha \bigl(M \bigl(x^{\ast },x^{\ast} \bigr) \bigr), $$
where
$$\begin{aligned} M \bigl(x^{\ast},x^{\ast} \bigr) =&\max \bigl\{ A_{b} \bigl(fx^{\ast},fx^{\ast},\ldots ,fx^{\ast },gx^{\ast} \bigr),A_{b} \bigl(fx^{\ast},fx^{\ast}, \ldots,fx^{\ast},Sx^{\ast } \bigr), \\ &{}A_{b} \bigl(gx^{\ast},gx^{\ast}, \ldots,gx^{\ast},Tx^{\ast } \bigr),A_{b} \bigl(Sx^{\ast },Sx^{\ast},\ldots,Sx^{\ast},gx^{\ast} \bigr), \\ &{}A_{b} \bigl(fx^{\ast},fx^{\ast}, \ldots,fx^{\ast},Tx^{\ast} \bigr) \bigr\} \\ =&\max \bigl\{ A_{b} \bigl(x^{\ast},x^{\ast}, \ldots,x^{\ast},Tx^{\ast } \bigr),A_{b} \bigl(fx^{\ast },fx^{\ast},\ldots,fx^{\ast},Sx^{\ast} \bigr), \\ &{}A_{b} \bigl(Tx^{\ast},Tx^{\ast}, \ldots,Tx^{\ast},Tx^{\ast } \bigr),A_{b} \bigl(x^{\ast },x^{\ast},\ldots,x^{\ast},Tx^{\ast} \bigr), \\ &{}A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},Tx^{\ast} \bigr) \bigr\} . \end{aligned}$$
Thus, we have \(A_{b}(x^{\ast},x^{\ast},\ldots,x^{\ast},Tx^{\ast })\leq\alpha A_{b}(x^{\ast},x^{\ast},\ldots,x^{\ast},Tx^{\ast})\), which implies that \(x^{\ast}=Tx^{\ast}=gx^{\ast}\), and hence \(x^{\ast}\) is a common fixed point of f, T, S, and g in Y.
To prove the uniqueness, let \(u \in Y\) be such that \(fu=gu=Su=Tu=u\). Note that
$$ A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},u \bigr)=A_{b} \bigl(Sx^{\ast},Sx^{\ast }, \ldots,Sx^{\ast},Tu \bigr)\leq\alpha \bigl(M \bigl(x^{\ast},u \bigr) \bigr), $$
where
$$\begin{aligned} M \bigl(x^{\ast},u \bigr) =&\max \bigl\{ A_{b} \bigl(fx^{\ast},fx^{\ast},\ldots,fx^{\ast },gu \bigr),A_{b} \bigl(fx^{\ast},fx^{\ast}, \ldots,fx^{\ast},Sx^{\ast} \bigr), \\ &{}A_{b}(gu,gu,\ldots,gu,Tu),A_{b} \bigl(Sx^{\ast},Sx^{\ast}, \ldots,Sx^{\ast },gu \bigr), \\ &{}A_{b} \bigl(fx^{\ast},fx^{\ast}, \ldots,fx^{\ast},Tu \bigr) \bigr\} \\ =&\max \bigl\{ A_{b} \bigl(x^{\ast},x^{\ast}, \ldots,x^{\ast},u \bigr),A_{b} \bigl(x^{\ast },x^{\ast }, \ldots,x^{\ast},x^{\ast} \bigr),A_{b}(u,u,\ldots,u,u), \\ &{}A_{b} \bigl(x^{\ast},x^{\ast},\ldots,x^{\ast},u \bigr),A_{b} \bigl(u,u,\ldots ,u,x^{\ast} \bigr) \bigr\} . \end{aligned}$$
Hence, \(x^{\ast}=u\). □
Corollary 2.2
Let
f, g, T, and
S
be self-mappings of a dislocated
\(A_{b}\)-quasi-metric space
X
with coefficient
\(s\geq1\). Assume that
\(S(X)\subseteq g(X)\), \(T(X)\subseteq f(X)\), and one of
\(S(X)\), \(g(X)\), \(T(X)\), or
\(f(X)\)
is a complete subspace of
X. Suppose that there exists
\(\alpha\in{}[ 0,\frac{1}{2})\)
such that for any
\(x, y\in X\), we have
$$ A_{b}(Sx,Sx,\ldots,Sx,Ty)\leq\alpha \bigl(M(x,y) \bigr), $$
(2.2)
where
$$\begin{aligned} M(x,y) =&\max \bigl\{ A_{b}(fx,fx,\ldots,fx,gy),A_{b}(fx,fx, \ldots,fx,Sx),A_{b}(gy,gy,\ldots ,gy,Ty),\\ &{}A_{b}(Sx,Sx,\ldots,Sx,gy),A_{b}(fx,fx,\ldots,fx,Ty) \bigr\} . \end{aligned}$$
Then
\((f,S)\)
and
\((g,T)\)
have a unique point of coincidence in
X. Furthermore, if
\((f,S)\)
and
\((g,T)\)
are weakly compatible, then there exists a unique common fixed point of
f, T, S, and
g
in
X.
Example 2.3
Let X and \(A_{b}\) be as in Example 1.3. Define the mappings f, g, S, and \(T:X\longrightarrow X\) by
$$\begin{aligned}& f(x)=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} x, & x< 2, \\ 2, & x\geq2; \end{array}\displaystyle \right .\qquad S(x)=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} \frac{2x}{(1+x)} & \mbox{if }x\neq-1, \\ 0, & x= -1;\end{array}\displaystyle \right . \qquad g(x)=T(x)=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} \frac{x}{6} & \mbox{if }x\neq1, \\ 1, & x= 1.\end{array}\displaystyle \right . \end{aligned}$$
Clearly, \((f,S)\) and \((g,T)\) are pairwise weakly compatible on X with \(S(X)\subseteq g(X)\), \(T(X)\subseteq f(X)\), and \(S(X)\) a complete subspace of X. We now show that for all \(x,y\in X\), condition (2.2) is satisfied. For this, we consider the following cases:
(i) If \(x\neq1\) and \(y=1\), then
$$\begin{aligned} A_{b}(Sx,Sx,\ldots,Sx,Ty) =&\biggl|\frac{2x}{1+x}\biggr|^{2}+(n-1)\biggl| 2 \biggl(\frac{2x}{1+x} \biggr)-1\biggr|^{2} \\ \leq&\frac{1}{36}A_{b}(fx,fx,\ldots,fx,Ty)\leq\alpha M(x,y). \end{aligned}$$
(ii) If \(x\neq1\) and \(y\neq1\), then
$$\begin{aligned} A_{b}(Sx,Sx,\ldots,Sx,Ty) =&\biggl|\frac{2x}{1+x}\biggr|^{2}+(n-1)\biggl| 2 \biggl(\frac{2x}{1+x} \biggr)-\frac{y}{6}\biggr|^{2} \\ \leq&\frac{1}{36}A_{b}(fx,fx,\ldots,fx,Ty)\leq\alpha M(x,y). \end{aligned}$$
(iii) If \(x=-1\) and \(y=1\), then
$$\begin{aligned} A_{b}(Sx,Sx,\ldots,Sx,Ty) =&(n-1)|0-1|^{2} \\ \leq&\frac{1}{36}A_{b}(fx,fx,\ldots,fx,Ty)\leq\alpha M(x,y). \end{aligned}$$
(iv) If \(x=-1\) and \(y\neq1\), then
$$\begin{aligned} A_{b}(Sx,Sx,\ldots,Sx,Ty) =&(n-1)\biggl|0-\frac{y}{6}\biggr|^{2} \\ \leq&\frac{1}{36}A_{b}(fx,fx,\ldots,fx,Ty)\leq\alpha M(x,y). \end{aligned}$$
Thus, all the conditions of Corollary 2.2 are satisfied. Moreover, \(x=1 \) is a common fixed point of f, T, S, and g.