In 1969, the class of multivalued mappings on metric spaces is introduced by Nadler [9] as an extension of the class of Banach contraction mappings; henceforth, the investigations of fixed points of multivalued mappings have received much attention. We give some notation and recall some needed definitions. In the sequel, \(\mathbb{N}\) denotes the set of all nonnegative integers, \(\mathbb{R}^{+}\) denotes the set of all positive real numbers, \(\mathcal{N}(X)\) denotes the family of nonempty subsets of X, \(\mathcal{C}L(X)\) denotes the family of nonempty closed subsets of X, and \(\mathcal{K}(X)\) denotes the family of nonempty compact subsets of X.
Let \(T:X\rightarrow\mathcal{N}(X)\) be a multivalued mapping on a metric space \((X,d)\). The point \(x\in X\) is called a fixed point of T if \(x\in Tx\). Set \(\emptyset\neq A \subseteq X \) and \(x\in X\). Defining the function
$$\operatorname{dist}:X\times\mathcal{N}(X)\rightarrow[0,\infty), \qquad \operatorname{dist}(x,A) = \inf\bigl\{ d(x,y) : y\in A\bigr\} $$
for any \(x\in X\), \(A\in\mathcal{N}(X)\), \(\operatorname{dist}(x,A)\) is called the distance from x to A. It is obvious that for fixed \(A_{0}\in\mathcal {K}(X)\), the function \(\operatorname{dist}(x,A_{0})\) is continuous at every \(x\in X\).
For any \(A,B \in\mathcal{C}L(X)\), the generalized Hausdorff distance H on the metric d is given by
$$ H(A,B)=\left \{\textstyle\begin{array}{@{}l@{\quad}l} \max \{ \sup_{x\in A} \operatorname{dist}(x,B),\sup_{y\in B}\operatorname{dist}(y,A) \}& \mbox{if it exists}, \\ \infty& \mbox{otherwise}. \end{array}\displaystyle \right . $$
In 2013, following Samet’s definition, Mohammadi et al. [10] extended the concept of an α-admissible single-valued mapping to the class of α-admissible multivalued mappings as follows.
Definition 2.1
([10])
Let \(\alpha :X\times X\rightarrow[0,\infty)\) and \(T:X\rightarrow\mathcal{N}(X)\) be two mappings on a metric space \((X,d)\). Then T is called an α-admissible mapping if for any \(x\in X\) and \(y\in Tx\) with \(\alpha(x,y)\geq1\), we have \(\alpha (y,z)\geq1\) for any \(z\in Ty\).
Next, we introduce the class of \((\alpha,\psi)\)-Meir-Keeler-Khan multi-valued mappings. Some results on existence and uniqueness conditions for fixed points were established for such mappings via α-admissible meaning. Hereafter, all mappings \(T : X \rightarrow\mathcal{K}(X)\) considered in the sequel of this paper satisfy
$$ \forall x,y \in X,\quad x\neq y \quad\Rightarrow\quad \operatorname{dist}(x,Ty)+\operatorname{dist}(y,Tx)\neq0. $$
(2.1)
Definition 2.2
Let \(T:X\rightarrow\mathcal{K}(X)\) be a mapping on a metric space \((X,d)\). Then T is called an \((\alpha ,\psi)\)
-Meir-Keeler-Khan multivalued mapping if there exist \(\psi\in \Omega\) and \(\alpha:X\times X\rightarrow[0,\infty)\) such that
$$ H(Tx,Ty)\neq0\quad\Rightarrow\quad\alpha (x,y)H(Tx,Ty)\leq\psi \bigl(P(x,y) \bigr) $$
(2.2)
for any \(x,y\in X\), where
$$P(x,y)= \frac{\operatorname{dist}(x,Tx)\operatorname{dist}(x,Ty) +\operatorname{dist}(y,Ty)\operatorname{dist}(y,Tx)}{\operatorname{dist}(x,Ty) +\operatorname{dist}(y,Tx)}. $$
First, we state an existence theorem for fixed points of \((\alpha,\psi )\)-Meir-Keeler-Khan multivalued mappings.
Theorem 2.3
Let
\(T:X\rightarrow\mathcal{K}(X)\)
be an
\((\alpha,\psi)\)-Meir-Keeler-Khan multivalued mapping on a metric space
\((X,d)\). Suppose that the following hypotheses hold:
-
(i)
\((X,d)\)
is a complete metric space;
-
(ii)
T
is an
α-admissible multi-valued mapping;
-
(iii)
There exist
\(x_{0}\)
and
\(x_{1}\in Tx_{0}\)
such that
\(\alpha(x_{0},x_{1})\geq1\);
-
(iv)
T
is continuous.
Then there exists a fixed point of
T
in
X.
Proof
We construct a sequence starting from \(x_{0}\). If \(x_{0}\in Tx_{0}\), then \(x_{0}\) is a fixed point. Suppose that \(x_{0}\notin Tx_{0}\). Because \(Tx_{0}\) is a compact subset of X, then \(d(x_{0},Tx_{0})>0\). If \(x_{1}\in Tx_{1}\), then \(x_{1}\) is a fixed point, and subsequently, this proof is complete. Assume that \(x_{1}\notin Tx_{1}\). Then it is clear that \(\operatorname{dist}(x_{1},Tx_{1})>0\) because \(Tx_{1}\) is a compact subset of X. We have
$$\begin{aligned} H(Tx_{0},Tx_{1})&\leq\alpha(x_{0},x_{1}) H(Tx_{0},Tx_{1}) \\ &\leq\psi \biggl(\frac{\operatorname{dist}(x_{0},Tx_{0})\operatorname{dist}(x_{0},Tx_{1}) +\operatorname{dist}(x_{1},Tx_{1}) \operatorname{dist}(x_{1},Tx_{0})}{\operatorname{dist}(x_{0},Tx_{1}) +\operatorname{dist}(x_{1},Tx_{0})} \biggr) \\ &= \psi \bigl(\operatorname{dist}(x_{0},Tx_{0}) \bigr). \end{aligned}$$
(2.3)
Moreover, by the definition of the Hausdorff metric and the fact that \(x_{1}\in Tx_{0}\) we get
$$ \operatorname{dist}(x_{1},Tx_{1})\leq H(Tx_{0},Tx_{1})\leq\psi \bigl(\operatorname{dist}(x_{0},Tx_{0}) \bigr). $$
(2.4)
In addition, the compactness of \(Tx_{1}\) implies that there exists \(x_{2}\in Tx_{1}\) such that
$$ d(x_{1},x_{2}) =\operatorname{dist}(x_{1},Tx_{1}). $$
(2.5)
In combination with equations (2.4) and (2.5), we obtain that
$$ d(x_{1},x_{2})\leq\psi \bigl( \operatorname{dist}(x_{0},Tx_{0}) \bigr). $$
(2.6)
We continue constructing the sequence similarly. If \(x_{2}\in Tx_{2}\), then this proof is done. Thus, we assume that \(x_{2}\notin Tx_{2}\). Because \(\alpha(x_{0},x_{1})\geq1\) and \(x_{1}\in Tx_{0}\), \(x_{2}\in Tx_{1}\), we have \(\alpha (x_{1},x_{2})\geq1\). Furthermore, using condition (2.2), we obtain that
$$\begin{aligned} H(Tx_{1},Tx_{2}) &\leq\alpha(x_{1},x_{2}) H(Tx_{1},Tx_{2}) \\ &\leq\psi \biggl(\frac{\operatorname{dist}(x_{1},Tx_{1}) \operatorname{dist}(x_{1},Tx_{2})+\operatorname{dist}(x_{2},Tx_{2}) \operatorname{dist}(x_{2},Tx_{1})}{\operatorname{dist}(x_{1},Tx_{2}) +\operatorname{dist}(x_{2},Tx_{1})} \biggr) \\ &= \psi \bigl(\operatorname{dist}(x_{1},Tx_{1}) \bigr) \end{aligned}$$
(2.7)
and, subsequently,
$$\begin{aligned} \operatorname{dist}(x_{2},Tx_{2})&\leq H(Tx_{1},Tx_{2}) \\ &\leq\psi \bigl(\operatorname{dist}(x_{1},Tx_{1}) \bigr) \\ &=\psi \bigl(d(x_{1},x_{2}) \bigr). \end{aligned}$$
(2.8)
Likewise, by the compactness of \(Tx_{2}\), there exists \(x_{3}\in Tx_{2}\) such that
$$ d(x_{2},x_{3}) =\operatorname{dist}(x_{2},Tx_{2}). $$
(2.9)
In combination with equations (2.6), (2.8), and (2.9), we obtain that
$$ \begin{aligned}[b] d(x_{2},x_{3})&\leq\psi \bigl( \operatorname{dist}(x_{1},Tx_{1}) \bigr) \\ &=\psi \bigl(d(x_{1},x_{2}) \bigr) \\ &\leq\psi^{2} \bigl(\operatorname{dist}(x_{0},Tx_{0}) \bigr). \end{aligned} $$
(2.10)
By induction, we can obtain a sequence \(\{x_{n}\}\) satisfying
$$x_{n+1}\in Tx_{n},\qquad x_{n+1}\notin Tx_{n+1},\qquad \alpha(x_{n},x_{n+1})\geq1 $$
and
$$ d(x_{n},x_{n+1})\leq\psi^{n} \bigl( \operatorname{dist}(x_{0},Tx_{0}) \bigr) $$
(2.11)
for all \(n\in\mathbb{N}\).
Next task is to verify that \(\{x_{n}\}\) is a Cauchy sequence. Regarding the properties of the function ψ, for any \(\epsilon>0\), there exists \(n(\epsilon)\) such that
$$ \sum_{k\geqslant n(\epsilon)}^{n-1}\psi ^{k} \bigl(\operatorname{dist}(x_{0},Tx_{0}) \bigr)< \epsilon. $$
(2.12)
Let \(n>m>n(\epsilon)\). Applying the triangle inequality repeatedly, we get
$$\begin{aligned} d(x_{m},x_{n})&\leq \sum _{k=m}^{n-1} d(x_{k},x_{k+1}) \\ &\leq \sum_{k=m}^{n-1}\psi^{k} \bigl(\operatorname{dist}(x_{0},Tx_{0}) \bigr) \\ &\leq \sum_{k\geqslant n(\epsilon)}^{n-1}\psi ^{k} \bigl(\operatorname{dist}(x_{0},Tx_{0}) \bigr) \\ &< \epsilon, \end{aligned}$$
(2.13)
which means that \(\{x_{n}\}\) is a Cauchy sequence in \((X,d)\). By the completeness of \((X,d)\) there exists \(x^{*}\in X\) such that \(x_{k}\xrightarrow{d} x^{*}\) as \(k\rightarrow\infty\). Since T is continuous, we have that \(Tx_{k} \xrightarrow{H} Tx^{*}\) as \(k\rightarrow\infty\), and thus
$$\begin{aligned} \operatorname{dist}\bigl(x^{*},Tx^{*}\bigr) &= \lim _{k\rightarrow\infty}\operatorname{dist}\bigl(x_{k+1},T x^{*}\bigr) \leq \lim_{k\rightarrow\infty}H\bigl(Tx_{k},Tx^{*}\bigr) =0, \end{aligned}$$
(2.14)
which shows that \(x^{*}\in Tx^{*}\) because \(Tx^{*}\) is compact, and the proof is done. □
Remark 2.4
Observe that Theorem 1.4 (see also [8]) follows immediately from Theorem 2.3.
In 2014, Hussain et al. [11] introduced the concept of the α-completeness of metric spaces.
Definition 2.5
([11])
Let \(\alpha :X\times X\rightarrow[0,\infty)\) be a mapping on a metric space \((X,d)\). The space \((X,d)\) is said to be α-complete if each Cauchy sequence \(\{x_{n}\}\) in X with \(\alpha(x_{n}, x_{n+1}) \geq1\) for all \(n\in\mathbb{N}\) converges in X.
Recently, Kutbi and Sintunavarat [12] introduced the concept of an α-continuous multivalued mapping.
Definition 2.6
([12])
Let \(\alpha :X\times X\rightarrow[0,\infty)\) and \(T:X\rightarrow\mathcal{C}L(X)\) be two given mappings on a metric space \((X,d)\). The mapping T is called an α-continuous multivalued mapping if, for every sequence \(\{x_{n}\}\) with \(x_{n}\xrightarrow{d} x^{*}\) as \(n\rightarrow\infty \) and \(\alpha(x_{n},x_{n+1})\geq1\) for each \(n\in\mathbb{N}\), we have \(Tx_{n} \xrightarrow{H} Tx^{*}\) as \(n\rightarrow\infty\).
Remark 2.7
Notice that the concept of α-completeness of metric spaces is weaker than the concept of completeness and the concept of an α-continuous multivalued mapping is weaker than the concept of continuity in metric spaces.
Addressing to Remark 2.7, we provide two examples to illustrate it.
Example 2.8
Let \(X=\mathbb{R}^{2}\backslash\{0\}\), and let the metric \(d:X^{2}\rightarrow\mathbb{R}\) be defined by \(d(x,y)=[(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}]^{1/2}\) for any \(x,y\in X\), where \(x=(x_{1},x_{2})\), \(y=(y_{1},y_{2})\). Let
$$Y= \bigl\{ (x,y)\in\mathbb{R}^{2}\backslash\{0\}:1\leq (x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2} \leq4 \bigr\} . $$
Define the mapping \(\alpha:X\times X\rightarrow[0,\infty)\) by
$$ \alpha(x,y)=\left \{\textstyle\begin{array}{@{}l@{\quad}l} 2^{d(x,y)}, &x,y\in Y, \\ \frac{1}{3} & \mbox{otherwise}. \end{array}\displaystyle \right . $$
Note that \((X, d)\) is just an α-complete metric space, not a complete metric space. Indeed, if \(\{x_{n}\}\subset X\) is a Cauchy sequence with \(\alpha(x_{n},x_{n+1})\geq1\) for each \(n\in\mathbb{N}\), then \(x_{n}\in Y\) for each \(n\in\mathbb{N}\). Since Y is a closed subset of X, it follows that \((Y, d)\) is a complete metric space, and so there exists \(x^{*}\in Y\) such that \(x_{n}\xrightarrow{d} x^{*}\) as \(n\rightarrow\infty\).
Example 2.9
Let \(X=(\mathbb{R}^{+}\cup\{0\})\times (\mathbb{R}^{+}\cup\{0\})\), and let the metric \(d:X^{2}\rightarrow\mathbb {R}\) be defined by \(d(x,y)=\max \{|x_{1}-x_{2} |,|y_{1}-y_{2}| \}\) for any \(x,y\in X\), where \(x=(x_{1},x_{2})\), \(y=(y_{1},y_{2})\). Let \(A=[0,1]\times[0,1]\subset X\). Define the mapping \(\alpha:X\times X\rightarrow[0,\infty)\) by
$$ \alpha(x,y)=\left \{\textstyle\begin{array}{@{}l@{\quad}l} \frac{1}{d(x,y)+1}+\frac{1}{2}, &x\in A, \\ \frac{1}{2} & \mbox{otherwise} \end{array}\displaystyle \right . $$
and define mapping \(T:X\rightarrow\mathcal{C}L(X)\) by
$$ Tx=\left \{\textstyle\begin{array}{@{}l@{\quad}l} \{\lambda x\}, &x\in A, \\ \{x\}, & x\in X \backslash A, \end{array}\displaystyle \right . $$
where \(\lambda\in[5,10]\). It is clear that T is not a continuous multivalued mapping from X into \(\mathcal{C}L(X)\) on H, but we can verify that T is an α-continuous multivalued mapping from X into \(\mathcal{C}L(X)\) on H. In fact, if \(\{x_{n}\}\subset X\) is a sequence defined by \(x_{n}=(1+\frac {1}{n+1},1+\frac{1}{n+1})\) for every \(n\in\mathbb{N}\), then \(x_{n}\in X \backslash A\) for every \(n\in\mathbb {N}\). Note that \(x_{n}\xrightarrow{d} (1,1)\) as \(n\rightarrow\infty\); however, \(Tx_{n}=(1+\frac{1}{n+1},1+\frac{1}{n+1})\xrightarrow{H} \{ (1,1)\}\neq\{(\lambda,\lambda)\}=T(1,1)\) as \(n\rightarrow\infty\). If \(\{x_{n}\}\) is a sequence with \(\alpha(x_{n},x_{n+1})\geq1\) for every \(n\in\mathbb{N}\) and \(x_{n}\xrightarrow{d} x\) as \(n\rightarrow\infty\), then \(x_{n},x\in A\) for every \(n\in\mathbb{N}\), and, subsequently, \(Tx_{n}=\{\lambda x_{n}\}\xrightarrow{H} \{\lambda x\}=Tx\) as \(n\rightarrow\infty\), that is, T is an α-continuous multivalued mapping from \(\mathcal{C}L(X)\) into H.
Remark 2.10
It is easy to observe from the proof of Theorem 2.3 that if we weaken conditions (i) and (iv) of theorem to α-completeness and α-continuity, respectively, then the conclusion still holds.
We state the following theorem with the α-completeness assumption of a metric space \((X,d)\) and the α-continuity assumption of the mapping instead of the completeness assumption and α-continuity assumption.
Theorem 2.11
Let
\(T:X\rightarrow\mathcal{K}(X)\)
be an
\((\alpha,\psi)\)-Meir-Keeler-Khan multivalued mapping on a metric space
\((X,d)\). Suppose that the following hypotheses hold:
-
(i)
\((X,d)\)
is an
α-complete metric space;
-
(ii)
T
is an
α-admissible multivalued mapping;
-
(iii)
There exist
\(x_{0}\)
and
\(x_{1}\in Tx_{0}\)
such that
\(\alpha(x_{0},x_{1})\geq1\);
-
(iv)
T
is an
α-continuous multivalued mapping.
Then there exists a fixed point of
T
in
X.
Proof
See the proof of Theorem 2.3. □
Remark 2.12
As an application of Theorem 2.11 and Remark 2.7, we find Redjel’s theorem (see Theorem 1.4) in [8].
Example 2.13
Let \(X=[0,10)\) with the metric \(d(x,y)=|x-y|\) for any \(x,y\in X\). Define the mapping \(\alpha :X^{2}\rightarrow[0,\infty)\) by
$$ \alpha(x,y)=\left \{\textstyle\begin{array}{@{}l@{\quad}l} 1, &x,y\in[0,1], \\ 0 & \mbox{otherwise}. \end{array}\displaystyle \right . $$
Define the mapping \(T:X\rightarrow\mathcal{C}L(X)\) by \(Tx=[0,\frac {x}{3}]\) for \(0\leq x \leq1\) and \(Tx=[0,2x-\frac{5}{3}]\) for \(1< x<10\). Then it is easy to check that T is α-admissible and X is not complete.
$$ H(Tx,Ty)=\left \{\textstyle\begin{array}{@{}l@{\quad}l} \frac{|x-y|}{3}, &x,y\in[0,1], \\ |y-\frac{x}{3}|, &x\in[0,1],y\in(1,10), \\ 2|x-y|, &x,y\in(1,10). \end{array}\displaystyle \right . $$
We can prove that T is not a continuous multivalued mapping on \((\mathcal{C}L(X),H)\), but T is a α-continuous multivalued mapping on \((\mathcal{C}L(X),H)\). Indeed, we have \(H(Tx,T1)= \frac {|x-1|}{3}\rightarrow0\) when \(x\in[0,1]\) and \(x\rightarrow1\). \(H(Tx,T1)= |x-\frac{1}{3}|\rightarrow\frac{2}{3}\) when \(x\rightarrow 1\) and \(x\in(1,10)\), that is, T is not continuous at \(1\in[0,10)\). If \(\{x_{n}\}\subset X\) is a sequence with \(\alpha(x_{n},x_{n+1})\geq1\) for each \(n\in\mathbb{N}\) and \(x_{n}\xrightarrow{d} x\) as \(n\rightarrow\infty\), then \(x_{n},x\in[0,1]\) for all \(n\in\mathbb{N}\), and, subsequently, \(Tx_{n}=[0, \frac{x_{n}}{3}]\xrightarrow{H} [0,\frac{x}{3}]=Tx\) as \(n\rightarrow\infty\), that is, T is an α-continuous multivalued mapping on \((\mathcal{C}L(X),H)\).
Let \(\psi(t)=\frac{3}{4}t\) for all \(t\geq0\). Because \(\alpha(x, y)=1\) whenever \(x,y\in[0,1]\) and \(\alpha(x, y)=0\) whenever \(x\notin[0,1]\) or \(y\notin[0,1]\), it is clear that
$$\alpha(x,y)H(Tx,Ty)\leq\psi \biggl( \frac{\operatorname{dist}(x,Tx) \operatorname{dist}(x,Ty)+\operatorname{dist}(y,Ty) \operatorname{dist}(y,Tx)}{\operatorname{dist}(x,Ty)+\operatorname{dist}(y,Tx)} \biggr) $$
whenever \(x\notin[0,1]\) or \(y\notin[0,1]\).
In the sequel, we only consider \(x,y\in[0,1]\); for \(x,y\in[0,1]\), we calculate that
$$\alpha(x,y)H(Tx,Ty)=\frac{|x-y|}{3} $$
and
$$\begin{aligned} & \psi \biggl( \frac{\operatorname{dist}(x,Tx)\operatorname{dist}(x,Ty) +\operatorname{dist}(y,Ty)\operatorname{dist}(y,Tx)}{\operatorname{dist}(x,Ty) +\operatorname{dist}(y,Tx)} \biggr) \\ &\quad= \frac{3}{4}\frac{\frac{2x}{3}\operatorname{dist}(x,Ty)+\frac {2y}{3}\operatorname{dist}(y,Tx)}{\operatorname{dist}(x,Ty)+\operatorname{dist}(y,Tx)}. \end{aligned}$$
(2.15)
Since \(x\neq y\), the inequalities \(x\leq\frac{y}{3}\) and \(y\leq\frac {x}{3}\) cannot be simultaneously true; otherwise, \(x=y=0\) from \(x\leq \frac{x}{9}\) or \(y\leq\frac{y}{9}\).
If \(x>\frac{y}{3}\) and \(y\leq\frac{x}{3}\), then \(\operatorname{dist}(y,Tx)=0\), and hence
$$\begin{aligned} & \psi \biggl( \frac{\operatorname{dist}(x,Tx)\operatorname{dist}(x,Ty) +\operatorname{dist}(y,Ty)\operatorname{dist}(y,Tx)}{\operatorname{dist}(x,Ty) +\operatorname{dist}(y,Tx)} \biggr) \\ &\quad= \frac{3}{4}\frac{\frac{2x}{3}\operatorname{dist}(x,Ty) +\frac{2y}{3}\operatorname{dist}(y,Tx)}{\operatorname{dist}(x,Ty) +\operatorname{dist}(y,Tx)} \\ &\quad= \frac{x}{2}. \end{aligned}$$
(2.16)
Note that if \(x>\frac{y}{3}\), \(y\leq\frac{x}{3}\), then \(\frac {x-y}{3}\leq\frac{x}{2}\). Hence,
$$ \alpha(x,y)H(Tx,Ty)\leq\psi \biggl(\frac{\operatorname{dist}(x,Tx) \operatorname{dist}(x,Ty)+\operatorname{dist}(y,Ty) \operatorname{dist}(y,Tx)}{\operatorname{dist}(x,Ty)+\operatorname{dist}(y,Tx)} \biggr). $$
(2.17)
Similarly, we can obtain that when \(y>\frac{x}{3}\), \(x\leq\frac {y}{3}\), \(x,y\in[0,1]\), the following inequality holds:
$$ \alpha(x,y)H(Tx,Ty)\leq\psi \biggl( \frac{\operatorname{dist}(x,Tx) \operatorname{dist}(x,Ty)+\operatorname{dist}(y,Ty)\operatorname{dist}(y,Tx)}{ \operatorname{dist}(x,Ty)+\operatorname{dist}(y,Tx)} \biggr). $$
(2.18)
If \(x>\frac{y}{3}\), \(y>\frac{x}{3}\), \(x,y\in[0,1]\), then
$$\begin{aligned} & \psi \biggl( \frac{\operatorname{dist}(x,Tx) \operatorname{dist}(x,Ty)+\operatorname{dist}(y,Ty) \operatorname{dist}(y,Tx)}{\operatorname{dist}(x,Ty)+\operatorname{dist}(y,Tx)} \biggr) \\ &\quad= \frac{3}{4}\frac{\frac{2x}{3}(x-\frac{y}{3})+\frac {2y}{3}(y-\frac{x}{3})}{(x-\frac{y}{3})+(y-\frac{x}{3})} \\ &\quad= \frac{1}{2}\frac{x(x-\frac{y}{3})+y(y-\frac {x}{3})}{(x-\frac{y}{3})+(y-\frac{x}{3})} \\ &\quad= \frac{3(x^{2}+y^{2})-2xy}{4(x+y)}. \end{aligned}$$
(2.19)
Notice that
$$\frac{|x-y|}{3}< \frac{3(x^{2}+y^{2})-2xy}{4(x+y)} $$
whenever \(x>y\) or \(y>x\).
Moreover, there exist \(x_{0}=\frac{1}{5}\in[0,1]\) and \(x_{1}=\frac {1}{16}\in Tx_{0}\) such that \(\alpha(x_{0},x_{1})\geq1\). Thus, condition (iii) in Theorem 2.11 holds. Therefore, by Theorem 2.11 it follows that there exists a fixed point of T in X. In this case, T has infinitely many fixed points such as 0 and 2.
Theorem 2.14
Let
\(T:X\rightarrow\mathcal{K}(X)\)
be an
\((\alpha,\psi)\)-Meir-Keeler-Khan multivalued mapping on a metric space
\((X,d)\). Suppose that the following hypotheses hold:
-
(i)
\((X,d)\)
is an
α-complete metric space;
-
(ii)
T
is an
α-admissible multivalued mapping;
-
(iii)
There exist
\(x_{0}\)
and
\(x_{1}\in Tx_{0}\)
such that
\(\alpha(x_{0},x_{1})\geq1\);
-
(iv)
If
\(\{x_{n}\}\)
is a sequence with
\(x_{n}\xrightarrow{d} x\)
as
\(n\rightarrow\infty\)
and
\(\alpha (x_{n},x_{n+1})\geq1\), then
\(\alpha(x_{n},x)\geq1\)
for each
\(n\in\mathbb {N}\).
Then there exists a fixed point of
T
in
X.
Proof
Following the proof of Theorem 2.3, we obtain a Cauchy sequence \(\{x_{n}\}\) with \(\alpha(x_{n},x_{n+1})\geq1\) for all \(n\in\mathbb{N}\) that converges to some \(x^{*}\in X\). Applying condition (iv), we have \(\alpha(x_{n},x^{*})\geq1\) for all \(n\in\mathbb{N}\). Next, assume that \(\operatorname{dist}(x^{*},Tx^{*})\neq 0\). Then, for each \(n\in\mathbb{N}\), we can derive
$$\begin{aligned} & \operatorname{dist}\bigl(x_{n+1},Tx^{*}\bigr) \\ &\quad\leq H\bigl(Tx_{n},Tx^{*}\bigr) \\ &\quad\leq\alpha\bigl(x_{n},x^{*}\bigr) H\bigl(Tx_{n},Tx^{*} \bigr) \\ &\quad\leq\psi \biggl(\frac{\operatorname{dist}(x_{n},Tx_{n}) \operatorname{dist}(x_{n},Tx^{*})+d(x^{*},Tx^{*})d(x^{*},Tx_{n})}{\operatorname{dist}(x_{n},Tx^{*}) +\operatorname{dist}(x^{*},Tx_{n})} \biggr) \\ &\quad\leq\psi \biggl(\frac{\operatorname{dist}(x_{n},Tx_{n}) \operatorname{dist}(x_{n},Tx^{*})+\operatorname{dist}(x^{*},Tx^{*})d(x^{*},x_{n+1})}{ \operatorname{dist}(x_{n},Tx^{*})+\operatorname{dist}(x^{*},Tx_{n})} \biggr). \end{aligned}$$
(2.20)
Since \(\psi(t)\leq t\), \(t\in[0,\infty)\), and \(\psi(t)=t\) if and only if \(t=0\), we thus have
$$\begin{aligned} \operatorname{dist}\bigl(x_{n+1},Tx^{*}\bigr) &\leq\psi \biggl(\frac{\operatorname{dist} (x_{n},Tx_{n})\operatorname{dist}(x_{n},Tx^{*})+\operatorname{dist} (x^{*},Tx^{*})d(x^{*},x_{n+1})}{\operatorname{dist}(x_{n},Tx^{*}) +\operatorname{dist}(x^{*},Tx_{n})} \biggr) \\ &\leq \frac{\operatorname{dist} (x_{n},Tx_{n})\operatorname{dist}(x_{n},Tx^{*})+\operatorname{dist} (x^{*},Tx^{*})d(x^{*},x_{n+1})}{\operatorname{dist}(x_{n},Tx^{*}) +\operatorname{dist}(x^{*},Tx_{n})}. \end{aligned}$$
(2.21)
Letting \(n\rightarrow\infty\) on the two sides of this inequality, we get
$$\begin{aligned} \operatorname{dist}\bigl(x^{*},Tx^{*}\bigr) &\leq \frac{ \lim_{n\rightarrow\infty}\operatorname{dist} (x_{n},Tx_{n})\operatorname{dist}(x_{n},Tx^{*})}{ \lim_{n\rightarrow \infty}[\operatorname{dist}(x_{n},Tx^{*})+\operatorname{dist}(x^{*},Tx_{n})]} \\ &\leq \frac{ \lim_{n\rightarrow\infty}\operatorname{dist}(x_{n},Tx_{n}) \lim_{n\rightarrow\infty}\operatorname{dist}(x_{n},Tx^{*})}{ \lim_{n\rightarrow\infty}\operatorname{dist}(x_{n},Tx^{*})} \\ &= \frac{ \lim_{n\rightarrow\infty}\operatorname{dist}(x_{n},Tx_{n}) \operatorname{dist}(x^{*},Tx^{*})}{\operatorname{dist}(x^{*},Tx^{*})} \\ &= \lim_{n\rightarrow\infty}\operatorname{dist}(x_{n},Tx_{n}) \\ &\leq \lim_{n\rightarrow\infty}d(x_{n},x_{n+1}) \\ &=0, \end{aligned}$$
(2.22)
which contradicts to \(\operatorname{dist}(x^{*},Tx^{*})\neq0\). As a consequence, \(\operatorname{dist}(x^{*},Tx^{*})=0\) implies that \(x^{*}\in Tx^{*}\) because \(Tx^{*}\) is a compact subset of X, and we complete this proof. □
Example 2.15
Reconsidering Example 2.13, we can find a sequence \(\{x_{n}=\frac{1}{n+1}\}_{n\in\mathbb{N}}\) with \(x_{n}\xrightarrow{d} 0\) as \(n\rightarrow\infty\) and \(\alpha (x_{n},x_{n+1})\geq1\), \(\alpha(x_{n},0)=1\geq1\) for all \(n\in\mathbb{N}\). Thus, conditions (i)-(iv) in Theorem 2.14 hold. Therefore, by Theorem 2.14, 0 is a fixed point of T.
Remark 2.16
As an application of Theorem 2.14 and Remark 2.7, Redjel’s conclusion (see Theorem 1.5) in [8] is a direct result of Theorem 2.14 and Remark 2.7.
Uniqueness of α-admissible mappings usually requires some extra conditions on the mapping itself or on the space on which the mapping is defined. These conditions can be defined as follows:
-
(H1)
\(\alpha(x^{*},x^{**})\geq1\) for any fixed points \(x^{*}\) and \(x^{**}\) of T.
-
(H2)
There exists \(z\in X\) with \(\alpha(x^{*},z)\geq1\), \(\alpha (x^{**},z)\geq1\) and \(\alpha(x^{*},y)\geq1\), \(\alpha(x^{**},y)\geq1\) for any \(y\in Tz\) and any fixed points \(x^{*}\), \(x^{**}\) of T.
-
(H3)
There exists \(z\in Tx^{*}\cap Tx^{**}\) such that \(\alpha(x^{*},z)\geq 1\) and \(\alpha(x^{**},z)\geq1\) for any fixed points \(x^{*}\), \(x^{**}\) of T.
Theorem 2.17
In the statements of Theorem
2.11
and Theorem
2.14, if the extra condition (H1) is added to them, then the fixed point mentioned in these two statements is unique.
Proof
Following the proof of Theorem 2.3 (resp. Theorem 2.14), there exists a fixed point \(x^{*}\) under the conditions of Theorem 2.11 (resp. Theorem 2.14). Assume that the mapping T has another fixed point \(x^{**}\) and \(x^{*}\neq x^{**}\). Using condition (H1), we get \(\alpha(x^{*},x^{**})\geq 1\), and hence
$$\begin{aligned} &H\bigl(Tx^{*},Tx^{**}\bigr) \\ &\quad\leq\alpha\bigl(x^{*},x^{**}\bigr) H\bigl(Tx^{*},Tx^{**} \bigr) \\ &\quad\leq\psi \biggl(\frac{\operatorname{dist}(x^{*},Tx^{*}) \operatorname{dist}(x^{*},Tx^{**})+\operatorname{dist}(x^{**},Tx^{**}) \operatorname{dist}(x^{**},Tx^{*})}{\operatorname{dist}(x^{*},Tx^{**}) +\operatorname{dist}(x^{**},T x^{*})} \biggr). \end{aligned}$$
(2.23)
Notice that \(x^{*}\in Tx^{*}\), \(x^{**}\in Tx^{**}\), and \(\psi(0)=0\); therefore,
$$\begin{aligned} & H\bigl(Tx^{*},Tx^{**}\bigr) \\ &\quad\leq\psi \biggl(\frac{\operatorname{dist}(x^{*},Tx^{*}) \operatorname{dist}(x^{*},Tx^{**})+\operatorname{dist}(x^{**},Tx^{**})d(x^{**},Tx^{*})}{ \operatorname{dist}(x^{*},Tx^{**})+d(x^{**},T x^{*})} \biggr) \\ &\quad=\psi(0) \\ &\quad=0, \end{aligned}$$
(2.24)
and hence \(H(Tx^{*},Tx^{**})=0\), which implies that \(Tx^{*}=Tx^{**}\). In addition,
$$\begin{aligned} d\bigl(x^{*},x^{**}\bigr)&=H\bigl(\bigl\{ x^{*}\bigr\} ,\bigl\{ x^{**}\bigr\} \bigr) \\ &\leq H\bigl(Tx^{*},Tx^{**}\bigr) \\ &= H\bigl(Tx^{*},Tx^{*}\bigr) \\ &=0, \end{aligned}$$
(2.25)
and thus \(d(x^{*},x^{**})=0\), which implies \(x^{*}=x^{**}\). □
Theorem 2.18
In the statement of Theorem
2.11, if the extra condition (H2) is added to it, then the fixed point mentioned in the statement is unique.
Proof
As shown in the proof of Theorem 2.3, there exists a fixed point \(x^{*}\) under the hypotheses of Theorem 2.11. Assume that T has another fixed point \(x^{**}\) and \(x^{*}\neq x^{**}\). By condition (H2), an element \(z\in X\) satisfying
$$\alpha\bigl(x^{*},z\bigr)\geq1, \qquad\alpha\bigl(x^{**},z\bigr)\geq1, \qquad \alpha\bigl(x^{*},y\bigr)\geq1,\qquad \alpha\bigl(x^{**},y\bigr) \geq1 $$
can be found in X for any \(y\in Tz\).
Defining the sequence \(\{z_{n}\}\) by \(z_{0}=z\), \(z_{n+1}\in Tz_{n}\) for all \(n\in\mathbb{N}\), we get
$$\alpha\bigl(x^{*},z_{n}\bigr)\geq1 \quad\mbox{and}\quad \alpha \bigl(x^{**},z_{n}\bigr)\geq1 $$
for each \(n\in\mathbb{N}\). Hence,
$$\begin{aligned} d\bigl(x^{*},z_{n+2}\bigr)&=H\bigl(\bigl\{ x^{*}\bigr\} , \{z_{n+2}\}\bigr) \\ &\leq H\bigl(Tx^{*},Tz_{n+1}\bigr) \\ &\leq\alpha\bigl(x^{*},z_{n+1}\bigr) H\bigl(Tx^{*},Tz_{n+1}\bigr) \\ &\leq\psi \biggl(\frac{\operatorname{dist}(x^{*},Tx^{*})\operatorname{dist}(x^{*},Tz_{n+1})+d(z_{n+1},Tz_{n+1})\operatorname{dist}(z_{n+1},Tx^{*})}{\operatorname{dist}(x^{*},Tz_{n+1})+\operatorname{dist}(z_{n+1},T x^{*})} \biggr) \\ &=\psi \biggl(\frac{\operatorname{dist}(z_{n+1},Tz_{n+1})\operatorname{dist}(z_{n+1},Tx^{*})}{\operatorname{dist}(x^{*},Tz_{n+1})+\operatorname{dist}(z_{n+1},T x^{*})} \biggr). \end{aligned}$$
Note that \(\psi(t)\leq t\) and
$$\begin{aligned}& \operatorname{dist}\bigl(z_{n+1},T x^{*}\bigr)\leq\operatorname{dist} \bigl(x^{*},Tz_{n+1}\bigr)+\operatorname{dist}\bigl(z_{n+1},T x^{*} \bigr), \\& \begin{aligned}[b] d\bigl(x^{*},z_{n+2}\bigr) &=\psi \biggl(\frac{\operatorname{dist}(z_{n+1},Tz_{n+1})\operatorname{dist}(z_{n+1},Tx^{*})}{\operatorname{dist}(x^{*},Tz_{n+1})+\operatorname{dist}(z_{n+1},T x^{*})} \biggr) \\ &\leq\psi \bigl(\operatorname{dist}(z_{n+1},Tz_{n+1}) \bigr). \end{aligned} \end{aligned}$$
(2.26)
On the other hand,
$$\begin{aligned} \operatorname{dist}(z_{n+1},Tz_{n+1})&=H(Tz_{n},Tz_{n+1}) \\ &\leq H(Tz_{n},Tz_{n+1}) \\ &\leq\alpha(z_{n},z_{n+1}) H(Tz_{n},Tz_{n+1}) \\ &\leq\psi \biggl(\frac{\operatorname{dist}(z_{n},Tz_{n}) \operatorname{dist}(z_{n},Tz_{n+1})+d(z_{n+1},Tz_{n+1}) \operatorname{dist}(z_{n+1},Tz_{n})}{\operatorname{dist}(z_{n},Tz_{n+1}) +\operatorname{dist}(z_{n+1},T z_{n})} \biggr) \\ &=\psi \biggl(\frac{\operatorname{dist}(z_{n},Tz_{n}) \operatorname{dist}(z_{n},Tz_{n+1})}{\operatorname{dist}(z_{n},Tz_{n+1}) +\operatorname{dist}(z_{n+1},T z_{n})} \biggr) \\ &\leq\psi \bigl(\operatorname{dist}(z_{n},Tz_{n}) \bigr). \end{aligned}$$
(2.27)
Iteratively, this inequality implies
$$\operatorname{dist}(z_{n+1},Tz_{n+1})\leq\psi^{n+1} \bigl(d(z_{0},Tz_{0})\bigr) $$
for each \(n\in\mathbb{N}\). In combination with (2.26) and (2.27), we have
$$d\bigl(x^{*},z_{n+2}\bigr)\leq\psi^{n+2}\bigl(d(z_{0},Tz_{0}) \bigr). $$
Letting \(n\rightarrow\infty\), we obtain
$$\lim_{n\rightarrow\infty}d\bigl(x^{*},z_{n}\bigr)=0. $$
Similarly, we get
$$\lim_{n\rightarrow\infty}d\bigl(x^{**},z_{n}\bigr)=0. $$
Immediately, \(x^{*}=x^{**}\) due to the uniqueness of the limit, and this completes the proof. □
Theorem 2.19
In the statement of Theorem
2.14, if the extra condition (H3) is added to it, then the fixed point mentioned in the statement is unique.
Proof
The existence of a fixed point is proved in Theorem 2.14. To prove the uniqueness, let \(x^{*}\) and \(x^{**}\) be any two fixed points of T with \(x^{*}\neq x^{**}\) under the conditions of Theorem 2.14. By condition (H3), there exists \(z\in Tx^{*}\cap Tx^{**}\) such that
$$\alpha\bigl(x^{*},z\bigr)\geq1\quad \mbox{and} \quad \alpha\bigl(x^{**},z \bigr)\geq1. $$
From the proof of Theorem 2.3 and Remark 2.10, we can construct a sequence \(\{z_{n}\}\) by \(z_{0}=x^{*}\), \(z_{1}=z\), \(z_{n+1}\in Tz_{n}\) for any \(n\in\mathbb{N}\) such that \(z_{n}\) converges to a fixed point ζ of T as \(n\rightarrow\infty\). Define the sequence \(\{ w_{n}\}\) by \(w_{0}=x^{**}\), \(w_{i}=z_{i}\) for \(i\in \mathbb{N}\setminus\{0\}\). Because T is α-admissible, we have
$$\alpha(z_{n},z_{n+1})\geq1\quad \mbox{and} \quad \alpha(w_{n},w_{n+1})\geq1 $$
for any \(n\in\mathbb{N}\). Note that the difference between the sequences \(\{z_{n}\}\) and \(\{w_{n}\}\) only lies in the first terms, so that \(w_{n}\xrightarrow{d} \zeta\) as \(n\rightarrow\infty\). Applying condition (iv) of Theorem 2.14, we get
$$\alpha(z_{n}, \zeta)\geq1 \quad\mbox{and}\quad \alpha(w_{n}, \zeta)\geq1 $$
for all \(n\in\mathbb{N}\). In particular, \(\alpha(z_{0}, \zeta)=\alpha (x^{*}, \zeta)\geq1\) and \(\alpha(w_{0},\zeta)=\alpha(x^{**},\zeta)\geq 1\).
If \(x^{*}\neq\zeta\), then
$$\begin{aligned} d\bigl(x^{*},\zeta\bigr)&=H\bigl(\bigl\{ x^{*}\bigr\} ,\{\zeta\}\bigr) \\ &\leq H\bigl(Tx^{*},T\zeta\bigr) \\ &\leq\alpha\bigl(x^{*},\zeta\bigr) H\bigl(Tx^{*},T\zeta\bigr) \\ &\leq\psi \biggl(\frac{\operatorname{dist}(x^{*},Tx^{*})\operatorname{dist}(x^{*},T\zeta)+d(\zeta,T\zeta)\operatorname{dist}(\zeta,Tx^{*})}{\operatorname{dist}(x^{*},T\zeta)+\operatorname{dist}(\zeta,T x^{*})} \biggr) \\ &=\psi(0) \\ &=0. \end{aligned}$$
(2.28)
Thus, \(x^{*}=\zeta\), which contradicts \(x^{*}\neq\zeta\). So \(x^{*}=\zeta\). Similarly, we get \(x^{**}=\zeta\), and therefore \(x^{*}=x^{**}\). This completes the proof. □