Let \(\mathfrak{F}_{G}\) denote the family of all functions \(F:\mathbb{R}_{+}\rightarrow\mathbb{R}\) which satisfy conditions (F1) and (F3′) and \(\mathcal{F}_{G}\) denote the family of all functions \(F:\mathbb{R}_{+}\rightarrow\mathbb{R}\) which satisfy conditions (F1) and (F3).
Definition 2.1
Let \((X,d)\) be a metric space and \(T:X\rightarrow X\) be a mapping. T is said to be modified generalized F-contraction of type (A) if there exist \(F\in\mathfrak{F}_{G}\) and \(\tau>0\) such that
$$ \forall x, y \in X,\quad \bigl[d(Tx, Ty)> 0 \Rightarrow \tau+F \bigl(d(Tx,Ty)\bigr)\leq F\bigl(M_{T}(x,y)\bigr)\bigr], $$
(3)
where
$$\begin{aligned} M_{T}(x,y) =& \max\biggl\{ d(x,y),\frac{d(x,Ty)+d(y,Tx)}{2}, \frac {d(T^{2}x,x)+d(T^{2}x,Ty)}{2},d\bigl(T^{2}x,Tx\bigr), \\ &d\bigl(T^{2}x,y\bigr),d\bigl(T^{2}x,Ty\bigr)+d(x,Tx), d(Tx,y)+d(y,Ty) \biggr\} . \end{aligned}$$
Remark 2.2
Note that \(\mathfrak{F}\subseteq\mathfrak{F}_{W}\). Since, for \(\beta\in(0,\infty)\), the function \(F(\alpha)=\frac{-1}{\alpha+\beta}\) satisfies the conditions (F1) and (F3′) but it does not satisfy (F2), we have \(\mathfrak{F}\subsetneq\mathfrak{F}_{W}\).
Definition 2.3
Let \((X,d)\) be a metric space and \(T:X\rightarrow X\) be a mapping. T is said to be modified generalized F-contraction of type (B) if there exist \(F\in\mathcal{F}_{G}\) and \(\tau>0\) such that
$$ \forall x, y \in X,\quad \bigl[d(Tx, Ty)> 0\Rightarrow\tau+F\bigl(d(Tx,Ty)\bigr) \leq F\bigl(M_{T}(x,y)\bigr)\bigr]. $$
Remark 2.4
Note that \(\mathcal{F}\subseteq\mathcal{F}_{W}\). Since, for \(\beta\in (0,\infty)\), the function \(F(\alpha)=\ln(\alpha+\beta)\) satisfies the conditions (F1) and (F3) but it does not satisfy (F2), we have \(\mathcal{F}\subsetneq\mathcal{F}_{W}\).
Remark 2.5
-
(1)
Every F-contraction is a modified generalized F-contraction.
-
(2)
Let T be a modified generalized F-contraction. From (3) for all \(x,y\in X\) with \(Tx\neq Ty\), we have
$$\begin{aligned} F\bigl(d(Tx,Ty)\bigr) < &\tau+F\bigl(d(Tx,Ty)\bigr) \\ \leq& F\biggl(\max \biggl\{ d(x,y),\frac{d(x,Ty)+d(y,Tx)}{2},\frac {d(T^{2}x,x)+d(T^{2}x,Ty)}{2}, \\ &d \bigl(T^{2}x,Tx\bigr),d\bigl(T^{2}x,y\bigr),d\bigl(T^{2}x,Ty\bigr)+d(x,Tx), \\ & d(Tx,y)+d(y,Ty)\biggr\} \biggr). \end{aligned}$$
Then, by (F1), we get
$$\begin{aligned} d(Tx,Ty) < &\max \biggl\{ d(x,y),\frac{d(x,Ty)+d(y,Tx)}{2},\frac {d(T^{2}x,x)+d(T^{2}x,Ty)}{2},d \bigl(T^{2}x,Tx\bigr), \\ &d\bigl(T^{2}x,y\bigr),d\bigl(T^{2}x,Ty\bigr)+d(x,Tx), d(Tx,y)+d(y,Ty)\biggr\} , \end{aligned}$$
for all \(x,y\in X\), \(Tx\neq Ty\).
The following examples show that the inverse implication of Remark 2.5(1) does not hold.
Example 2.6
Let \(X=[0,2]\) and define a metric d on X by \(d(x,y)=\mid x- y\mid\) and let \(T: X\to X\) be given by
$$ Tx=\left \{ \textstyle\begin{array}{l@{\quad}l} 1, & x\in[0,2), \\ \frac{1}{2}, & x=2. \end{array}\displaystyle \right . $$
Obviously, \((X,d)\) is complete metric space. Since T is not continuous, T is not an F-contraction. For \(x\in[0,2)\) and \(y=2\), we have
$$ d(Tx,T2)=d\biggl(1,\frac{1}{2}\biggr)=\frac{1}{2}>0 $$
and
$$\begin{aligned}& \max\biggl\{ d(x,y),\frac{d(x,Ty)+d(y,Tx)}{2},\frac {d(T^{2}x,x)+d(T^{2}x,Ty)}{2},d\bigl(T^{2}x,Tx \bigr), \\& \qquad d\bigl(T^{2}x,y\bigr),d\bigl(T^{2}x,Ty\bigr)+d(x,Tx), d(Tx,y)+d(y,Ty) \biggr\} \\& \quad \geq d(Tx,y)+d(y,Ty) \\& \quad =d(1,2)+d\biggl(2,\frac{1}{2}\biggr) \\& \quad =\frac{5}{2}. \end{aligned}$$
Therefore
$$\begin{aligned} d(Tx,T2) \leq&\frac{1}{5}\max\biggl\{ d(x,y),\frac{d(x,Ty)+d(y,Tx)}{2}, \frac {d(T^{2}x,x)+d(T^{2}x,Ty)}{2},d\bigl(T^{2}x,Tx\bigr), \\ &d\bigl(T^{2}x,y\bigr),d\bigl(T^{2}x,Ty\bigr)+d(x,Tx), d(Tx,y)+d(y,Ty) \biggr\} . \end{aligned}$$
So, by choosing \(F(\alpha)=\ln(\alpha)\) and \(\tau=\ln\frac{1}{5}\) we see that T is modified generalized F-contraction of type (A) and type (B).
Example 2.7
Let \(X=\{-2,-1,0,1,2\}\) and define a metric d on X by
$$ d(x,y)=\left \{ \textstyle\begin{array}{l@{\quad}l} 0, & \mbox{if }x=y, \\ 2, & \mbox{if }(x,y)\in\{(2,-2),(-2,2)\}, \\ 1, & \mbox{otherwise}. \end{array}\displaystyle \right . $$
Then \((X,d)\) is a complete metric space. Let \(T : X \to X\) be defined by
$$T(-2) = T(-1) = T0 = -2, \qquad T1 = -1, \qquad T2 = 0. $$
First observe that
$$d(Tx,Ty)>0\quad \Leftrightarrow \quad \bigl[\bigl(x\in\{-2,-1,0\}\wedge y=1\bigr) \vee\bigl(x\in\{ -2,-1,0\}\wedge y=2\bigr)\vee(x=1,y=2)\bigr]. $$
Now we consider the following cases:
Case 1. Let \(x\in\{-2,-1,0\}\wedge y=1\), then
$$\begin{aligned}& d(Tx,Ty)=d(-2,-1)=1,\qquad d(x,y)=d(x,1)=1,\qquad d(x,Tx)=d(x,-2)=0\vee1, \\& d(y,Ty)=d(1,-1)=1,\qquad \frac{d(x,Ty)+d(Tx,y)}{2}=\frac {d(x,-1)+d(-2,1)}{2}=\frac{1}{2} \vee1, \\& \frac{d(T^{2}x,x)+d(T^{2}x,Ty)}{2}=\frac{d(-2,x)+d(-2,-1)}{2}=\frac {1}{2}\vee1, \\& d\bigl(T^{2}x,Tx\bigr)=d(-2,-2)=0,\qquad d\bigl(T^{2}x,y \bigr)=d(-2,1)=1, \\& d\bigl(T^{2}x,Ty\bigr)=d(-2,-1)=1, \\& d\bigl(T^{2}x,Ty\bigr)+d(x,Tx)=d(-2,-1)+d(x,-2)=1\vee2, \\& d(Tx,y)+d(y,Ty)=d(-2,1)+d(1,-1)=2. \end{aligned}$$
Case 2. Let \(x\in\{-2,-1,0\}\wedge y=2\), then
$$\begin{aligned}& d(Tx,Ty)=d(-2,0)=1,\qquad d(x,y)=d(x,2)=1\vee2,\qquad d(x,Tx)=d(x,-2)=0\vee1, \\& d(y,Ty)=d(2,0)=1,\qquad \frac{d(x,Ty)+d(Tx,y)}{2}=\frac {d(x,0)+d(-2,2)}{2}=1\vee \frac{3}{2}, \\& \frac{d(T^{2}x,x)+d(T^{2}x,Ty)}{2}=\frac{d(-2,x)+d(-2,0)}{2}=\frac {1}{2}\vee1, \\& d\bigl(T^{2}x,Tx\bigr)=d(-2,-2)=0,\qquad d\bigl(T^{2}x,y \bigr)=d(-2,2)=2, \\& d\bigl(T^{2}x,Ty\bigr)=d(-2,0)=1, \\& d\bigl(T^{2}x,Ty\bigr)+d(x,Tx)=d(-2,0)+d(x,-2)=1\vee2, \\& d(Tx,y)+d(y,Ty)=d(-2,2)+d(2,0)=3. \end{aligned}$$
Case 3. Let \(x=1\wedge y=2\), then
$$\begin{aligned}& d(Tx,Ty)=d(-1,0)=1,\qquad d(x,y)=d(1,2)=1,\qquad d(x,Tx)=d(1,-1)=1, \\& d(y,Ty)=d(2,0)=1,\qquad \frac{d(x,Ty)+d(Tx,y)}{2}=\frac {d(1,0)+d(-1,2)}{2}=1, \\& \frac{d(T^{2}x,x)+d(T^{2}x,Ty)}{2}=\frac{d(-2,1)+d(-2,0)}{2}=1, \\& d\bigl(T^{2}x,Tx\bigr)=d(-2,-1)=1,\qquad d\bigl(T^{2}x,y \bigr)=d(-2,2)=2, \\& d\bigl(T^{2}x,Ty\bigr)=d(-2,0)=1,\qquad d\bigl(T^{2}x,Ty\bigr)+d(x,Tx)=d(-2,0)+d(1,-1)=2, \\& d(Tx,y)+d(y,Ty)=d(-1,2)+d(2,0)=2. \end{aligned}$$
In Case 1, we have
$$\begin{aligned} d(Tx,Ty)&=\max \biggl\{ d(x,y),d(x,Tx),d(y,Ty),\frac{d(x,Ty)+d(y,Tx)}{2} \biggr\} \\ &=\max \biggl\{ \frac{d(T^{2}x,x)+d(T^{2}x,Ty)}{2},d\bigl(T^{2}x,Tx\bigr), d \bigl(T^{2}x,y\bigr),d\bigl(T^{2}x,Ty\bigr) \biggr\} =1. \end{aligned}$$
This proves that for all \(F\in\mathcal{F}\cup\mathfrak{F}\), T is not an F-weak contraction and generalized F-contraction. Since every F-contraction is an F-weak contraction and a generalized F-contraction, T is not an F-contraction. However, we see that
$$\begin{aligned} d(Tx,T2) \leq&\frac{1}{2}\max\biggl\{ d(x,y),\frac{d(x,Ty)+d(y,Tx)}{2}, \frac {d(T^{2}x,x)+d(T^{2}x,Ty)}{2},d\bigl(T^{2}x,Tx\bigr), \\ &d\bigl(T^{2}x,y\bigr),d\bigl(T^{2}x,Ty\bigr)+d(x,Tx), d(Tx,y)+d(y,Ty)\biggr\} . \end{aligned}$$
Hence, by choosing \(F(\alpha)=\ln(\alpha)\) and \(\tau=\ln\frac{1}{2}\) we see that T is modified generalized F-contraction of type (A) and type (B).
Theorem 2.8
Let
\((X,d)\)
be a complete metric space and
\(T:X\rightarrow X\)
be a modified generalized
F-contraction of type (A). Then
T
has a unique fixed point
\(x^{*}\in X\)
and for every
\(x_{0}\in X\)
the sequence
\(\{T^{n}x_{0}\}_{n\in\mathbb{N}}\)
converges to
\(x^{*}\).
Proof
Let \(x_{0}\in X\). Put \(x_{n+1}=T^{n}x_{0}\) for all \(n\in\mathbb{N}\). If, there exists \(n\in\mathbb{N}\) such that \(x_{n+1}=x_{n}\), then \(Tx_{n}=x_{n}\). That is, \(x_{n}\) is a fixed point of T. Now, we suppose that \(x_{n+1}\neq x_{n}\) for all \(n\in\mathbb{N}\). Then \(d(x_{n+1}, x_{n})>0\) for all \(n\in\mathbb{N}\). It follows from (3) that, for all \(n\in\mathbb{N}\),
$$\begin{aligned}& \tau+F\bigl(d(Tx_{n-1},Tx_{n})\bigr) \\& \quad \leq F\biggl( \max\biggl\{ d(x_{n-1},x_{n}), \frac{d(x_{n-1},Tx_{n})+d(x_{n},Tx_{n-1})}{2}, \\& \qquad \frac {d(T^{2}x_{n-1},x_{n-1})+d(T^{2}x_{n-1},Tx_{n})}{2},d\bigl(T^{2}x_{n-1},Tx_{n-1} \bigr), \\& \qquad d\bigl(T^{2}x_{n-1},x_{n}\bigr),d \bigl(T^{2}x_{n-1},Tx_{n}\bigr)+d(x_{n-1},Tx_{n-1}), d(Tx_{n-1},x_{n})+d(x_{n},Tx_{n}) \biggr\} \biggr) \\& \quad =F\biggl( \max\biggl\{ d(x_{n-1},x_{n}), \frac{d(x_{n-1},x_{n+1})+d(x_{n},x_{n})}{2}, \\& \qquad \frac{d(x_{n+1},x_{n-1})+d(x_{n+1},x_{n+1})}{2},d(x_{n+1},x_{n+1}), \\& \qquad d(x_{n+1},x_{n}),d(x_{n+1},x_{n+1})+d(x_{n-1},x_{n}), d(x_{n},x_{n})+d(x_{n},x_{n+1}) \biggr\} \biggr) \\& \quad =F \bigl( \max \bigl\{ d(x_{n-1},x_{n}),d(x_{n},x_{n+1}) \bigr\} \bigr). \end{aligned}$$
(4)
If there exists \(n\in\mathbb{N}\) such that \(\max\{d(x_{n-1},x_{n}),d(x_{n},x_{n+1})\}=d(x_{n},x_{n+1})\) then (4) becomes
$$\tau+F\bigl(d(x_{n},x_{n+1})\bigr)\leq F\bigl(d(x_{n},x_{n+1}) \bigr). $$
Since \(\tau>0\), we get a contradiction. Therefore
$$\max\bigl\{ d(x_{n-1},x_{n}),d(x_{n},x_{n+1}) \bigr\} =d(x_{n-1},x_{n}),\quad \forall n\in\mathbb{N}. $$
Thus, from (4), we have
$$\begin{aligned} F\bigl(d(x_{n},x_{n+1})\bigr) =&F \bigl(d(Tx_{n-1},Tx_{n})\bigr)\leq F\bigl(d(x_{n-1},x_{n}) \bigr)-\tau \\ < &F\bigl(d(x_{n-1},x_{n})\bigr). \end{aligned}$$
(5)
It follows from (5) and (F1) that
$$d(x_{n},x_{n+1})< d(x_{n-1},x_{n}), \quad \forall n\in\mathbb{N}. $$
Therefore \(\{d(x_{n+1},x_{n})\}_{n\in\mathbb{N}}\) is a nonnegative decreasing sequence of real numbers, and hence
$$\lim_{n\rightarrow\infty}d(x_{n+1},x_{n})=\gamma\geq0. $$
Now, we claim that \(\gamma=0\). Arguing by contradiction, we assume that \(\gamma>0\). Since \(\{d(x_{n+1},x_{n})\}_{n\in\mathbb{N}}\) is a nonnegative decreasing sequence, for every \(n \in\mathbb{N}\), we have
$$ d(x_{n+1},x_{n})\geq\gamma. $$
(6)
From (6) and (F1), we get
$$\begin{aligned} \begin{aligned}[b] F(\gamma)\leq{}& F\bigl(d(x_{n+1},x_{n})\bigr) \leq F\bigl(d(x_{n-1},x_{n})\bigr)-\tau \\ \leq{}& F\bigl(d(x_{n-2},x_{n-1})\bigr)-2\tau \\ &\vdots \\ \leq{}& F\bigl(d(x_{0},x_{1})\bigr)-n \tau, \end{aligned} \end{aligned}$$
(7)
for all \(n \in\mathbb{N}\). Since \(F(\gamma)\in\mathbb{R}\) and \(\lim_{n\rightarrow\infty}[F(d(x_{0},x_{1}))-n \tau]=-\infty\), there exists \(n_{1}\in\mathbb{N}\) such that
$$ F\bigl(d(x_{0},x_{1})\bigr)-n \tau< F(\gamma), \quad \forall n> n_{1}. $$
(8)
It follows from (7) and (8) that
$$F(\gamma)\leq F\bigl(d(x_{0},x_{1})\bigr)-n \tau< F(\gamma), \quad \forall n> n_{1}. $$
It is a contradiction. Therefore, we have
$$ \lim_{n\rightarrow\infty}d(x_{n},Tx_{n})= \lim_{n\rightarrow\infty} d(x_{n},x_{n+1})=0. $$
(9)
As in the proof of Theorem 2.1 in [2], we can prove that \(\{x_{n}\}_{n=1}^{\infty}\) is a Cauchy sequence. So by completeness of \((X,d)\), \(\{x_{n}\}_{n=1}^{\infty}\) converges to some point \(x^{*}\) in X. Therefore,
$$ \lim_{n\rightarrow\infty}d\bigl(x_{n},x^{*}\bigr)=0. $$
(10)
Finally, we will show that \(x^{*}=Tx^{*}\). We only have the following two cases:
-
(I)
\(\forall n\in\mathbb{N}\), \(\exists i_{n}\in\mathbb {N}\), \(i_{n}> i_{n-1}\), \(i_{0}=1\) and \(x_{i_{n}+1} =Tx^{*}\),
-
(II)
\(\exists n_{3}\in\mathbb{N}\), \(\forall n\geq n_{3}\), \(d(Tx_{n},Tx^{*})>0\).
In the first case, we have
$$x^{*}=\lim_{n\rightarrow\infty}x_{i_{n+1}} =\lim_{n\rightarrow\infty }Tx^{*}=Tx^{*}. $$
In the second case from the assumption of Theorem 2.8, for all \(n\geq n_{3}\), we have
$$\begin{aligned}& \tau+F\bigl(d\bigl(x_{n+1},Tx^{*}\bigr)\bigr) \\& \quad =\tau+F\bigl(d\bigl(Tx_{n},Tx^{*}\bigr)\bigr) \\& \quad \leq F\biggl( \max\biggl\{ d\bigl(x_{n},x^{*}\bigr), \frac{d(x_{n},Tx^{*})+d(x^{*},Tx_{n})}{2}, \\& \qquad \frac{d(T^{2}x_{n},x_{n})+d(T^{2}x_{n},Tx^{*})}{2},d\bigl(T^{2}x_{n},Tx_{n} \bigr), \\& \qquad d\bigl(T^{2}x_{n},x^{*}\bigr),d\bigl(T^{2}x_{n},Tx^{*} \bigr)+d(x_{n},Tx_{n}), \\& \qquad d\bigl(Tx_{n},x^{*}\bigr)+d\bigl(x^{*},Tx^{*}\bigr)\biggr\} \biggr). \end{aligned}$$
(11)
From (F3′), (10), and taking the limit as \(n\rightarrow\infty\) in (11), we obtain
$$ \tau+F\bigl(d\bigl(x^{*},Tx^{*}\bigr)\bigr)\leq F\bigl(d\bigl(x^{*},Tx^{*}\bigr)\bigr). $$
This is a contradiction. Hence, \(x^{*}=Tx^{*}\). Now, let us to show that T has at most one fixed point. Indeed, if \(x^{*},y^{*}\in X\) are two distinct fixed points of T, that is, \(Tx^{*}=x^{*}\neq y^{*}=Ty^{*}\), then
$$d\bigl(Tx^{*},Ty^{*}\bigr)=d\bigl(x^{*},y^{*}\bigr)>0. $$
It follows from (3) that
$$\begin{aligned} F\bigl(d\bigl(x^{*},y^{*}\bigr)\bigr) < &\tau+F\bigl(d\bigl(x^{*},y^{*}\bigr)\bigr) \\ =&\tau+F\bigl(d\bigl(Tx^{*},Ty^{*}\bigr)\bigr) \\ \leq& F\biggl( \max\biggl\{ d\bigl(x^{*},y^{*}\bigr),\frac{d(x^{*},Ty^{*})+d(y^{*},Tx^{*})}{2}, \frac {d(T^{2}x^{*},x^{*})+d(T^{2}x^{*},Ty^{*})}{2}, \\ &d\bigl(T^{2}x^{*},Tx^{*}\bigr),d\bigl(T^{2}x^{*},y^{*}\bigr),d \bigl(T^{2}x^{*},Ty^{*}\bigr)+d\bigl(x^{*},Tx^{*}\bigr), \\ &d\bigl(Tx^{*},y^{*}\bigr)+d\bigl(y^{*},Ty^{*}\bigr)\biggr\} \biggr) \\ =&F\biggl( \max\biggl\{ d\bigl(x^{*},y^{*}\bigr),\frac{d(x^{*},y^{*})+d(y^{*},x^{*})}{2}, \frac {d(x^{*},x^{*})+d(x^{*},y^{*})}{2}, \\ &d\bigl(x^{*},x^{*}\bigr),d\bigl(x^{*},y^{*}\bigr),d\bigl(x^{*},y^{*}\bigr)+d\bigl(x^{*},x^{*} \bigr), \\ &d\bigl(x^{*},y^{*}\bigr)+d\bigl(y^{*},y^{*}\bigr)\biggr\} \biggr) \\ =&F\bigl(d\bigl(x^{*},y^{*}\bigr)\bigr), \end{aligned}$$
which is a contradiction. Therefore, the fixed point is unique. □
Theorem 2.9
Let
\((X,d)\)
be a complete metric space and
\(T:X\rightarrow X\)
be a continuous modified generalized
F-contraction of type (B). Then
T
has a unique fixed point
\(x^{*}\in X\)
and for every
\(x\in X\)
the sequence
\(\{T^{n}x\}_{n\in\mathbb{N}}\)
converges to
\(x^{*}\).
Proof
By using a similar method to that used in the proof of Theorem 2.8, we have
$$\begin{aligned} F\bigl(d(x_{n},x_{n+1})\bigr)&=F\bigl(d(Tx_{n-1},Tx_{n}) \bigr)\leq F\bigl(d(x_{n-1},x_{n})\bigr)-\tau \\ &< F\bigl(d(x_{n-1},x_{n})\bigr) \end{aligned}$$
and
$$ \lim_{n\rightarrow\infty}d(x_{n},Tx_{n})=\lim _{n\rightarrow\infty} d(x_{n},x_{n+1})=0. $$
As in the proof of Theorem 2.1 in [3], we can prove that \(\{x_{n}\}_{n=1}^{\infty}\) is a Cauchy sequence. So, by completeness of \((X,d)\), \(\{x_{n}\}_{n=1}^{\infty}\) converges to some point \(x^{*}\in X\). Since T is continuous, we have
$$d\bigl(x^{*},Tx^{*}\bigr)=\lim_{n\rightarrow\infty} d(x_{n},Tx_{n})= \lim_{n\rightarrow\infty} d(x_{n},x_{n+1})=0. $$
Again by using similar method as used in the proof of Theorem 2.8, we can prove that \(x^{*}\) is the unique fixed point of T. □