In this section, we first give some properties of partial cone metric spaces. The following properties are used (particularly when dealing with cone metric spaces in which the cone need not be normal).
Remark 2.1
Let P be a solid cone. Then the following properties are used:
-
(1)
If \(a\preceq b\) and \(b\preceq c\), then \(a\preceq c\).
-
(2)
If \(a\ll b\) and \(b\ll c\), then \(a\ll c\).
-
(3)
If \(\theta\preceq u\ll c\) for each \(c\in \operatorname {int}P\), then \(u=\theta\).
-
(4)
If \(a\preceq\lambda a\), where \(0\leq\lambda<1\), then \(a=\theta\).
-
(5)
If \(a\preceq b +c\) for each \(c\in \operatorname {int}P\), then \(a\preceq b\).
Now, we establish some Suzuki-type fixed point theorems for generalized mappings in partially ordered partial cone metric spaces over a solid cone.
Theorem 2.1
Let
\((X,p,\sqsubseteq)\)
be a
θ-complete partially ordered partial cone metric space over a solid cone
P
of a normed vector space
\((E,\Vert \cdot \Vert )\). Let
\(T:X\to X\)
be a nondecreasing mapping with respect to ⊑. Define the nonincreasing function
\(\psi:[0,1)\to(\frac{1}{2},1]\)
by
$$\psi(r)= \textstyle\begin{cases} 1 &\textit{if } 0\leq r < \frac{\sqrt{5}-1}{2},\\ \frac {1-r}{r^{2}} &\textit{if } \frac{\sqrt{5}-1}{2}\leq r< \frac{\sqrt{2}}{2},\\ \frac{1}{1+r} &\textit {if } \frac{\sqrt{2}}{2}\leq r < 1 . \end{cases} $$
Assume that there exists
\(r\in[0,1)\)
such that
$$ \psi(r)p(x,Tx)\preceq p(x,y) \quad \textit{implies}\quad p(Tx,Ty) \preceq r U(x,y) $$
(2.1)
for all comparable
\(x,y\in X\), where
\(U(x,y)\in\{ p(x,y),p(x,Tx),p(y,Ty),\frac{p(x,Ty)+p(y,Tx)}{2}\}\). Suppose that the following conditions hold:
-
(i)
there exists
\(x_{0}\in X\)
such that
\(x_{0}\sqsubseteq Tx_{0}\);
-
(ii)
for a nondecreasing sequence
\(x_{n}\stackrel{\tau_{p}}{\to} x\), we have
\(x_{n}\sqsubseteq x\)
for all
\(n\in N\);
-
(iii)
for two nondecreasing sequences
\(\{x_{n}\}, \{y_{n}\}\subseteq X\)
such that
\(x_{n}\sqsubseteq y_{n}\), \(x_{n}\stackrel{\tau_{p}}{\to} x\), and
\(y_{n} \stackrel{\tau_{p}}{\to} y\)
as
\(n\to\infty\), we have
\(x\sqsubseteq y\).
Then
T
has a fixed point in
X. Moreover, the fixed point of
T
is unique if
-
(iv)
for all
\(x,y\in X\)
that are not comparable, there exists
\(u\in X\)
comparable with
x
and y.
Proof
Since \(\psi(r)\leq1\), \(\psi(r)p(x,Tx)\preceq p(x,Tx)\) for every \(x\in X\). By (2.1) and using the triangular inequality, we have
$$p \bigl(Tx,T^{2}x \bigr)\preceq r U(x,Tx), $$
where
$$\begin{aligned} U(x,Tx) \in& \biggl\{ p(x,Tx),p( x,T x),p \bigl(Tx,T^{2}x \bigr), \frac {p(x,T^{2}x)+p(Tx,Tx)}{2} \biggr\} \\ =& \biggl\{ p(x,Tx),p \bigl(Tx,T^{2}x \bigr),\frac{p(x,T^{2}x)+p(Tx,Tx)}{2} \biggr\} . \end{aligned}$$
Thus, we get the following cases:
-
Case 1. \(p(Tx,T^{2}x) \preceq r p(x,Tx)\).
-
Case 2. \(p(Tx,T^{2}x) \preceq r p(Tx,T^{2}x)\), which implies that \(p(Tx,T^{2}x)=\theta\).
-
Case 3. \(p(Tx,T^{2}x) \preceq r \frac{p(x,T^{2}x)+p(Tx,Tx)}{2}\preceq r \frac{p(x,Tx)+p(Tx,T^{2}x)}{2}\), which implies that \(p(Tx,T^{2}x) \preceq r p(x,Tx)\).
Then, in all cases, we have
$$ p \bigl(Tx,T^{2}x \bigr)\preceq r p(x,Tx). $$
(2.2)
Let \(x_{0}\in X\) be such that \(x_{0}\sqsubseteq Tx_{0}\). Since T is nondecreasing, we get
$$x_{0}\sqsubseteq Tx_{0} \sqsubseteq T^{2}x_{0} \sqsubseteq\cdots\sqsubseteq T^{n}x_{0}\sqsubseteq\cdots. $$
Define the sequence \(\{x_{n}\}\) by \(x_{n}=T^{n}x_{0}\), so that \(x_{n+1}=Tx_{n}\). If \(x_{n}=x_{n+1}=Tx_{n}\) for some n, then \(x_{n}\) becomes a fixed point of T. Now, suppose that \(x_{n}\neq x_{n+1}\) for all \(n\in N\). Then \(p(x_{n},x_{n+1})\succ\theta\).
Note that \(\psi(r)p(x_{n-1},Tx_{n-1})\preceq p(x_{n-1},Tx_{n-1})\) for all \(n\in Z^{+}\), where \(Z^{+}\) is the set of positive integers. Since \(x_{n-1}\) and \(Tx_{n-1}\) are comparable for all \(n>0\), by (2.1) we have
$$p(x_{n},x_{n+1})=p \bigl(Tx_{n-1},T^{2}x_{n-1} \bigr)\preceq r U(x_{n-1},Tx_{n-1}), $$
where
$$\begin{aligned} U(x_{n-1},Tx_{n-1}) \in& \biggl\{ p(x_{n-1},Tx_{n-1}),p(x_{n-1},Tx_{n-1}),p \bigl(Tx_{n-1},T^{2}x_{n-1} \bigr), \\ &{}\frac {p(x_{n-1},T^{2}x_{n-1})+p(Tx_{n-1},Tx_{n-1})}{2} \biggr\} \\ = & \biggl\{ p(x_{n-1},x_{n}),p(x_{n},x_{n+1}), \frac {p(x_{n-1},x_{n+1})+p(x_{n},x_{n})}{2} \biggr\} . \end{aligned}$$
Thus, we get the following cases:
-
Case 1. If \(U(x_{n-1},Tx_{n-1})=p(x_{n-1},x_{n})\), then \(p(x_{n},x_{n+1})\preceq r p(x_{n-1},x_{n})\).
-
Case 2. \(p(x_{n},x_{n+1})\preceq r p(x_{n},x_{n+1}) \), which implies that \(p(x_{n},x_{n+1})=\theta\).
-
Case 3. \(p(x_{n},x_{n+1})\preceq r \cdot\frac {p(x_{n-1},x_{n+1})+p(x_{n},x_{n})}{2}\preceq r(\frac {p(x_{n-1},x_{n})+p(x_{n},x_{n+1})}{2})\), which implies that \(p(x_{n},x_{n+1})\preceq r p(x_{n-1},x_{n})\).
Then, in all cases, we have
$$p(x_{n},x_{n+1})\preceq r p(x_{n-1},x_{n}). $$
Continuing this process, it follows that
$$p(x_{n},x_{n+1})\preceq r p(x_{n-1},x_{n})\preceq r^{2} p(x_{n-2},x_{n-1}) \preceq\cdots\preceq r^{n}p(x_{0},x_{1}). $$
Thus, for any \(m,n\in Z^{+}\) with \(m>n\), we get
$$\begin{aligned} p(x_{n},x_{m}) \preceq& p(x_{n},x_{n+1})+ p(x_{n+1},x_{n+2})+ \cdots+p(x_{m-1},x_{m}) \\ \preceq& \bigl(r^{n}+r^{n+1}+\cdots+ r^{m-1} \bigr)p(x_{0},x_{1}) \\ \preceq&\frac{r^{n}}{1-r}p(x_{0},x_{1}). \end{aligned}$$
Let \(\theta\ll c\) be given, Choose \(\delta>0\) such that \(c+N_{\delta}(\theta)\subseteq P\), where \(N_{\delta}(\theta)=\{y\in E: \Vert y\Vert <\delta\}\). Also, choose a natural number \(N_{1}\) such that \(\frac{r^{n}}{1-r}p(x_{0},x_{1})\in N_{\delta}(\theta)\) for all \(n\geq N_{1}\). Then \(\frac {r^{n}}{1-r}p(x_{0},x_{1})\ll c\) for all \(n\geq N_{1}\). Thus,
$$p(x_{n},x_{m})\preceq\frac{r^{n}}{1-r}p(x_{0},x_{1}) \ll c $$
for all \(m>n\geq N_{1}\). Hence, \(\{x_{n}\}\) is a θ-Cauchy sequence in \((X,p)\). Since \((X,p)\) is a θ-complete partial cone metric space, there exists \(z\in X\) such that \(x_{n}\stackrel{\tau_{p}}{\to} z\) and \(p(z,z)=\theta\).
First, we show that there exists \(j\in Z^{+}\) such that \(T^{j}z=z\). Arguing by contradiction, we assume that \(T^{j}z\neq z\) for all \(j\in Z^{+}\).
Note that, by condition (ii), if \(\{x_{n}\}\) is nondecreasing, then \(x_{n}\sqsubseteq z\). Since T is nondecreasing, we get \(x_{n+1}=Tx_{n}\sqsubseteq Tz\) for all \(n\in N\). Taking the limit as \(n\to\infty\), by (iii) we obtain that \(z\sqsubseteq Tz\), which implies that \(\{T^{n}z\}\) is a nondecreasing sequence. So, we have shown that for \(\{x_{n}\}\), \(\{T^{n}z\}\) also is a θ-Cauchy sequence. We also have \(T^{j}z\) is comparable with \(x_{n}\) for all \(j,n\in N\).
Now, we prove that
$$ p \bigl(T^{j+1}z, z \bigr)\preceq r^{j}p(Tz,z) \quad \text{for all } j \in N. $$
(2.3)
Since \(p(T^{j}z,z)\succ\theta\), \(p(z,z)=\theta\), and \(x_{n}\stackrel{\tau _{p}}{\to} z\), there exists \(N_{2}\in N\) such that \(p(x_{n},z)\preceq\frac {p(T^{j}z,z)}{3} \) for all \(n\geq N_{2}\). We have
$$\begin{aligned} \psi(r)p(x_{n},Tx_{n}) \preceq& p(x_{n},Tx_{n})\preceq p(x_{n},z)+p(x_{n+1},z) \\ \preceq&\frac{2}{3}p \bigl(T^{j}z,z \bigr)=p \bigl(T^{j}z,z \bigr)-\frac{1}{3}p \bigl(T^{j}z,z \bigr) \\ \preceq &p \bigl(T^{j}z,z \bigr)-p(x_{n},z)\preceq p \bigl(x_{n}, T^{j}z \bigr). \end{aligned}$$
By (2.1) and using the triangle inequality, we get that
$$p \bigl(x_{n+1},T^{j+1}z \bigr)\preceq r U \bigl(x_{n},T^{j}z \bigr), $$
where
$$U \bigl(x_{n},T^{j}z \bigr)\in \biggl\{ p \bigl(x_{n},T^{j}z \bigr),p(x_{n},x_{n+1}),p \bigl(T^{j}z,T^{j+1}z \bigr),\frac {p(x_{n},T^{j+1}z)+p(T^{j}z,x_{n+1})}{2} \biggr\} . $$
Thus,
$$\begin{aligned} p \bigl(z,T^{j+1}z \bigr) \preceq& p(x_{n+1},z)+p \bigl(x_{n+1},T^{j+1}z \bigr) \\ \preceq& p(x_{n+1},z)+ r U \bigl(x_{n},T^{j}z \bigr), \end{aligned}$$
where
$$U \bigl(x_{n},T^{j}z \bigr)\in \biggl\{ p \bigl(x_{n},T^{j}z \bigr),p(x_{n},x_{n+1}),p \bigl(T^{j}z,T^{j+1}z \bigr), \frac{p(x_{n},T^{j+1}z)+p(T^{j}z,x_{n+1})}{2} \biggr\} . $$
Since \(x_{n}\stackrel{\tau_{p}}{\to} z\) for every \(c\gg\theta\), there exists \(n_{0}\in N\) such that \(p(x_{n},z)\ll\frac{c}{2}\) and \(p(x_{n},x_{n+1})\ll\frac{c}{2}\) for all \(n> n_{0}\). Now, for \(n>n_{0}\), we consider the following cases:
Case 1. \(p(z,T^{j+1}z)\preceq p(x_{n+1},z) +r p(x_{n},T^{j}z)\preceq p(x_{n+1},z) +r( p(x_{n},z)+p(z,T^{j}z))\preceq rp(z, T^{j}z)+c\). Then it follows from Remark 2.1(5) that \(p(z,T^{j+1}z)\preceq rp(z,T^{j}z)\), and we get
$$ p \bigl(z,T^{j+1}z \bigr)\preceq r p \bigl(z,T^{j}z \bigr)\preceq r^{2} p \bigl(z,T^{j-1}z \bigr) \preceq\cdots\preceq r^{j}p(z,Tz). $$
(2.4)
Case 2. \(p(z,T^{j+1}z)\preceq p(x_{n+1},z) +r p(x_{n},x_{n+1})\ll c\), which implies that \(p(z,T^{j+1}z)=\theta\).
Case 3.
$$p \bigl(z,T^{j+1}z \bigr)\preceq p(x_{n+1},z) +r p \bigl(T^{j}z,T^{j+1}z \bigr)\preceq c +r p \bigl(T^{j}z,T^{j+1}z \bigr), $$
which implies that \(p(z,T^{j+1}z)\preceq r p(T^{j}z,T^{j+1}z)\). Then from (2.2) we have
$$p \bigl(z,T^{j+1}z \bigr)\preceq r p \bigl(T^{j}z,T^{j+1}z \bigr)\preceq r^{2} p \bigl(T^{j-1}z,T^{j}z \bigr) \preceq\cdots\preceq r^{j+1}p(z,Tz)\preceq r^{j}p(z,Tz). $$
Case 4.
$$\begin{aligned} p \bigl(z,T^{j+1}z \bigr) \preceq& p(x_{n+1},z) +r\cdot\frac {p(x_{n},T^{j+1}z)+p(T^{j}z,x_{n+1})}{2} \\ \preceq& p(x_{n+1},z) +r \frac {p(x_{n},z)+p(z,T^{j+1}z)+p(T^{j}z,z)+p(z,x_{n+1})}{2} \\ \ll& c+ r \cdot\frac{p(z,T^{j+1}z)+p(T^{j}z,z)}{2}, \end{aligned}$$
which implies that \(p(z,T^{j+1}z)\preceq rp(z,T^{j}z)\). Then from (2.4) we get \(p(z,T^{j+1}z)\preceq r^{j}p(z,Tz)\).
Thus, in all cases, we obtain \(p(z,T^{j+1}z)\preceq r^{j}p(z,Tz)\nonumber \), that is, (2.3) holds.
Now, we consider the following three cases:
-
(1)
\(0\leq r<\frac{\sqrt{5}-1}{2}\);
-
(2)
\(\frac{\sqrt{5}-1}{2} \leq r< \frac{\sqrt{2}}{2}\);
-
(3)
\(\frac{\sqrt{2}}{2}\leq r< 1\).
In case (1), we note that \(r^{2}+r<1\) and \(\psi(r)=1\). If we assume that \(p(T^{2}z,z)\prec p(T^{2}z,T^{3}z)\), then by (2.2) we have
$$\begin{aligned}p(z,Tz)&\preceq p \bigl(z,T^{2}z \bigr)+p \bigl(Tz,T^{2}z \bigr) \\ & \prec p \bigl(T^{2}z,T^{3}z \bigr)+p \bigl(Tz,T^{2}z \bigr) \\ &\preceq r^{2} p(z,Tz)+r p(z,Tz) \\ &\preceq p(z,Tz). \end{aligned} $$
This is a contradiction. So, we have \(p(T^{2}z,z)\succeq p(T^{2}z,T^{3}z)= \psi(r)p(T^{2}z,T^{3}z)\). By (2.1)-(2.3) we deduce that
$$p \bigl(T^{3}z,Tz \bigr)\preceq r U \bigl(T^{2}z,z \bigr), $$
where
$$U \bigl(T^{2}z,z \bigr)\in \biggl\{ p \bigl(T^{2}z,z \bigr),p \bigl(T^{2}z,T^{3}z \bigr),p(z,Tz),\frac {p(T^{3}z,z)+p(Tz,T^{2}z)}{2} \biggr\} . $$
Thus, we get the following cases:
-
Case 1. \(p(T^{3}z,Tz)\preceq r p(T^{2}z,z)\preceq r^{2} p(Tz,z)\preceq r p(Tz,z)\).
-
Case 2. \(p(T^{3}z,Tz)\preceq r p(T^{2}z,T^{3}z) \preceq r^{3}p(Tz,z)\preceq r p(Tz,z)\).
-
Case 3. \(p(T^{3}z,Tz)\preceq r p(Tz,z)\).
-
Case 4. \(p(T^{3}z,Tz)\preceq r \frac{p(T^{3}z,z)+p(Tz,T^{2}z)}{2}\preceq r[\frac{r^{2}p(Tz,z)+rp(z,Tz)}{2}]\preceq r^{2} p(Tz,z)\preceq r p(Tz,z)\).
Then, in all cases, we have \(p(T^{3}z,Tz)\preceq r p(Tz,z)\). Hence,
$$\begin{aligned} p(z,Tz) \preceq& p \bigl(z,T^{3}z \bigr)+p \bigl(T^{3}z,Tz \bigr) \\ \preceq& r^{2}p(z,Tz)+r p(z,Tz)= \bigl(r^{2}+1 \bigr) p(z,Tz) \\ \prec& p(z,Tz), \end{aligned}$$
which is a contradiction.
In case (2), we note that \(2r^{2}<1\) and \(\psi(r)=\frac{1-r}{r^{2}}\). Now, we show by induction that
$$ p \bigl(T^{n}z,z \bigr)\preceq r p(z,Tz) $$
(2.5)
for \(n\geq2\). By (2.2), (2.5) holds for \(n=2\). Assume that (2.5) holds for some n with \(n\geq2\). Since
$$p(z,Tz)\preceq p \bigl(z,T^{n}z \bigr)+p \bigl(T^{n}z,Tz \bigr)\preceq p \bigl(z,T^{n}z \bigr)+rp(z,Tz), $$
we have
$$p(z,Tz)\preceq\frac{1}{1-r}p \bigl(z,T^{n}z \bigr), $$
and so
$$\begin{aligned}\psi(r)p \bigl(T^{n}z,T^{n+1}z \bigr)&= \frac {1-r}{r^{2}}p \bigl(T^{n}z,T^{n+1}z \bigr)\preceq \frac{1-r}{r^{n}}p \bigl(T^{n}z,T^{n+1}z \bigr) \\ &\preceq(1-r) p(z,Tz)\preceq p \bigl(z,T^{n}z \bigr). \end{aligned} $$
Therefore, by the hypotheses we have
$$p \bigl(T^{n+1}z,Tz \bigr)\preceq r U \bigl(T^{n}z,Tz \bigr), $$
where
$$U \bigl(T^{n}z,z \bigr)\in \biggl\{ p \bigl(T^{n}z,z \bigr),p \bigl(T^{n}z,T^{n+1}z \bigr),p(z,Tz),\frac {p(T^{n+1}z,z)+p(Tz,T^{n}z)}{2} \biggr\} . $$
Thus, we get the following cases:
-
Case 1. \(p(T^{n+1}z,Tz)\preceq r p(T^{n}z,z)\preceq r^{n} p(Tz,z)\preceq r p(Tz,z)\).
-
Case 2. \(p(T^{n+1}z,Tz)\preceq r p(T^{n}z,T^{n+1}z) \preceq r^{n+1}p(Tz,z)\preceq r p(Tz,z)\).
-
Case 3. \(p(T^{n+1}z,Tz)\preceq r p(Tz,z)\).
-
Case 4.
$$\begin{aligned}p \bigl(T^{n+1}z,Tz \bigr)&\preceq r \frac {p(T^{n+1}z,z)+p(Tz,T^{n}z)}{2}\preceq r \biggl(\frac{r^{n} p(Tz,z)+rp(Tz,z)}{2} \biggr) \\ &\preceq r^{2} p(Tz,z)\preceq r p(Tz,z). \end{aligned} $$
Then, in all cases, we have \(p(T^{n+1}z,Tz)\preceq r p(Tz,z)\). Therefore, (2.5) holds. Now, from (2.3) we have
$$p \bigl(z,T^{n+1}z \bigr)\preceq r p \bigl(z,T^{n}z \bigr)\preceq\cdots\preceq r^{n}p(z,Tz) $$
for \(n\geq1\). Since \(0\leq r<1\), for every \(c\gg\theta\), there exists \(n_{0}\in N\) such that \(p(Tz,z)\ll c\) for all \(n\geq n_{0}\). Hence,
$$\begin{aligned}p(z,Tz)&\preceq p \bigl(z,T^{n+1}z \bigr)+p \bigl(T^{n+1}z,Tz \bigr) \\ & \preceq r^{n}p(z,Tz)+rp(z,Tz)\ll c+rp(z,Tz), \end{aligned} $$
which implies that \(p(Tz,z)=\theta\). Thus, \(Tz=z\). This is a contradiction.
In case (3), we note that for \(x,y\in X\), either
$$\psi(r)p(x,Tx)\preceq p(x,y) \quad \text{or} \quad \psi(r)p \bigl(Tx,T^{2}x \bigr) \preceq p(Tx,y). $$
Indeed, if
$$\psi(r)p(x,Tx)\succ p(x,y) \quad \text{and} \quad \psi(r)p \bigl(Tx,T^{2}x \bigr) \succ p(Tx,y), $$
then we have
$$\begin{aligned}p(x,Tx)&\preceq p(x,y)+p(Tx,y) \\ & \prec\psi(r) \bigl[p(x,Tx)+ p \bigl(Tx,T^{2}x \bigr) \bigr] \\ & \prec \psi(r) \bigl[p(x,Tx)+ rp(x,Tx) \bigr] \\ &= \biggl(\frac{1}{1+r} \biggr) (1+r)p(x,Tx)=p(x,Tx). \end{aligned} $$
This is a contradiction. Now, since either
$$\psi(r)p(x_{2n},Tx_{2n})\preceq p(x_{2n},z) \quad \text{or} \quad \psi (r)p(x_{2n+1},Tx_{2n+1}) \preceq p(x_{2n+1},z) $$
for all \(n\in N\), by (2.1) it follows that either
$$p(Tx_{2n},Tz)\preceq r U(x_{2n},z)\quad \text{or} \quad p(Tx_{2n+1},Tz)\preceq r U(x_{2n+1},z), $$
where
$$\begin{aligned}& U(x_{2n},z)\in \biggl\{ p(z,x_{2n}),p(x_{2n},x_{2n+1}),p(z,Tz), \frac {p(x_{2n},Tz)+p(z,x_{2n+1})}{2} \biggr\} , \\& U(x_{2n+1},z)\in \biggl\{ p(z,x_{2n+1}),p(x_{2n+1},x_{2n+2}),p(z,Tz), \frac {p(x_{2n+1},Tz)+p(z,x_{2n+2})}{2} \biggr\} . \end{aligned}$$
Hence, we deduce that either
$$ p(Tz,z)\preceq p(Tx_{2n},z)+p(Tx_{2n},Tz) $$
(2.6)
or
$$ p(Tz,z)\preceq p(Tx_{2n+1},z)+p(Tx_{2n+1},Tz). $$
(2.7)
Since \(x_{n}\stackrel{\tau_{p}}{\to} z\) for every \(c\gg\theta\), there exists \(n_{0}\in N\) such that \(p(x_{n},z)\ll\frac{c}{2}\) and \(p(x_{n},x_{n+1})\ll\frac{c}{2}\) for all \(n> n_{0}\). Now, by (2.6) we get the following cases:
-
Case 1. \(p(Tz,z)\preceq p(x_{2n+1},z)+r p(z,x_{2n})\ll c\) implies \(p(Tz,z)=\theta\).
-
Case 2. \(p(Tz,z)\preceq p(x_{2n+1},z)+rp(x_{2n},x_{2n+1})\ll c \) implies \(p(Tz,z)=\theta\).
-
Case 3. \(p(Tz,z)\preceq p(x_{2n+1},z)+rp(z,Tz) \ll c+ rp(z,Tz) \) implies \(p(Tz,z)=\theta\).
-
Case 4.
$$\begin{aligned}p(Tz,z)&\preceq p(x_{2n+1},z)+r \biggl[ \frac {p(x_{2n},Tz)+p(z,x_{2n+1})}{2} \biggr] \\ &\preceq p(x_{2n+1},z)+r \biggl[\frac {p(x_{2n},z)+p(z,Tz)+p(z,x_{2n+1})}{2} \biggr]\ll c+ rp(z,Tz), \end{aligned} $$
which implies that \(p(Tz,z)=\theta\). Then, in all cases, we have \(p(Tz,z)=\theta\). Similarly, by (2.7) we also have \(p(Tz,z)=\theta\). Thus, \(Tz=z\). This is a contradiction.
Therefore, in all cases, there exists \(j\in N\) such that \(T^{j}z=z\). Since \(\{T^{n}z\}\) is a θ-Cauchy sequence, we obtain \(z=Tz\). If not, that is, if \(z\neq Tz\), from \(p(T^{nj}z,T^{nj+1}z)=p(z,Tz)\) for all \(n\in N\) it follows that \(\{T^{n}z\}\) is not a θ-Cauchy sequence. Hence, z is a fixed point of T.
Finally, we prove the uniqueness of the fixed point. Suppose that there exist \(z_{1},z_{2}\in X\) with \(z_{1}\neq z_{2}\) such that \(Tz_{1}=z_{1}\) and \(Tz_{2}=z_{2}\). We have two possible cases:
Case (a). If \(z_{1}\) and \(z_{2}\) are comparable, using (2.1) with \(x=z_{1}\) and \(y=z_{2}\), we get that
$$p(z_{1},z_{2})=p(Tz_{1},Tz_{2}) \preceq r U(z_{1},z_{2}), $$
where
$$\begin{aligned} U(z_{1},z_{2}) &\in \biggl\{ p(z_{1},z_{2}),p(z_{1},Tz_{1}),p(z_{2},Tz_{2}), \frac {p(z_{1},Tz_{2})+p(z_{2},Tz_{1})}{2} \biggr\} \\ &= \biggl\{ p(z_{1},z_{2}),p(z_{1},z_{1}),p(z_{2},z_{2}), \frac{p(z_{1},z_{2})+p(z_{2},z_{1})}{2} \biggr\} \\ &= \bigl\{ p(z_{1},z_{2}),p(z_{1},z_{1}),p(z_{2},z_{2}) \bigr\} . \end{aligned} $$
Thus, we get the following cases:
-
Case 1. \(p(z_{1},z_{2})\preceq rp(z_{1},z_{2})\) implies \(p(z_{1},z_{2})=\theta\).
-
Case 2. \(p(z_{1},z_{2})\preceq rp(z_{1},z_{1})\preceq rp(z_{1},z_{2})\) implies \(p(z_{1},z_{2})=\theta\).
-
Case 3. \(p(z_{1},z_{2})\preceq rp(z_{2},z_{2})\preceq rp(z_{1},z_{2})\) implies \(p(z_{1},z_{2})=\theta\).
Thus, in all cases, we have \(p(z_{1},z_{2})=\theta\), that is, \(z_{1}=z_{2}\). This is a contradiction. Hence, \(z_{1}=z_{2}\).
Case (b). If \(z_{1}\) and \(z_{2}\) are not comparable, then there exists \(x\in X\) comparable with \(z_{1}\) and \(z_{2}\). First, we note that for each \(x\in X\) comparable with \(z_{1}\), we have that \(T^{n}z_{1}\) and \(T^{n}x\) are comparable and \(\psi (r)p(T^{n-1}z_{1},T^{n}z_{1})\preceq p(T^{n-1}z_{1},T^{n}z_{1})=p(z_{1},z_{1})\preceq p(T^{n-1}z_{1},T^{n-1}x)\). By (2.1) we obtain
$$p \bigl(z_{1},T^{n}x \bigr)=p \bigl(T^{n}z_{1},T^{n}x \bigr)\preceq r U \bigl(T^{n-1}z_{1},T^{n-1}x \bigr), $$
where
$$\begin{aligned} U \bigl(T^{n-1}z_{1},T^{n-1}x \bigr)&\in \biggl\{ p \bigl(T^{n-1}z_{1},T^{n-1}x \bigr),p \bigl(T^{n-1}z_{1},T^{n}z_{1} \bigr),p \bigl(T^{n-1}x,T^{n}x \bigr), \\ &\quad \frac {p(T^{n-1}x,T^{n}z_{1})+p(T^{n-1}z_{1},T^{n}x)}{2} \biggr\} \\ &= \biggl\{ p \bigl(z_{1},T^{n-1}x \bigr),p(z_{1},z_{1}),p \bigl(T^{n-1}x,T^{n}x \bigr),\frac {p(z_{1},T^{n-1}x)+p(z_{1},T^{n}x)}{2} \biggr\} , \end{aligned} $$
Thus, we get the following cases:
-
Case 1. \(p(z_{1},T^{n}x)\preceq rp(z_{1},T^{n-1}x)\preceq r^{2}p(z_{1},T^{n-2}x) \preceq\cdots\preceq r^{n} p(z_{1},x) \).
-
Case 2. \(p(z_{1},T^{n}x)\preceq rp(z_{1},z_{1})\preceq rp(z_{1},T^{n-1}x)\preceq\cdots\preceq r^{n} p(z_{1},x) \).
-
Case 3. \(p(z_{1},T^{n}x)\preceq r p(T^{n-1}x,T^{n}x)\preceq r^{2}p(T^{n-2}x,T^{n-1}x) \preceq\cdots\preceq r^{n} p(x,Tx)\).
-
Case 4. \(p(z_{1},T^{n}x)\preceq r[\frac{p(z_{1},T^{n-1}x)+p(z_{1},T^{n}x)}{2}] \) implies \(p(z_{1},T^{n}x)\preceq rp(z_{1},T^{n-1}x)\preceq r^{n} p(z_{1},x) \).
Thus, in all cases, we have
$$p \bigl(z_{1},T^{n}x \bigr)\preceq r^{n} p(z_{1},x) \text{or} p \bigl(z_{1},T^{n}x \bigr)\preceq r^{n} p(x,Tx). $$
Similarly, \(p(z_{2},T^{n}x)\preceq r^{n} p(z_{2},x)\) or \(p(z_{2},T^{n}x)\preceq r^{n} p(x,Tx)\). Let \(\theta\ll c\) and choose a natural number \(N_{3}\) such that \(r^{n} p(z_{1},x) \ll\frac{c}{2}\), or \(r^{n} p(x,Tx)\ll\frac{c}{2}\) and \(r^{n} p(z_{2},x) \ll\frac{c}{2}\) for all \(n\geq N_{3}\). Thus,
$$p(z_{1},z_{2})\preceq p \bigl(z_{1},T^{n}x \bigr)+p \bigl(z_{2},T^{n}x \bigr) \ll \frac{c}{2}+\frac{c}{2}=c, $$
which is again a contradiction. Hence, \(z_{1}=z_{2}\). □
Now, in order to support the usability of Theorem 2.1, we present the following example.
Example 2.1
Let \(E=C_{R}^{1}[0,1]\) with the norm \(\Vert u\Vert =\Vert u\Vert _{\infty}+\Vert u'\Vert _{\infty}\), and \(X=P=\{u\in E:u(t)\geq0,t\in[0,1]\}\), which is a nonnormal solid cone. Define the mapping \(p:X\times X\to P\) by
$$p(x,y)= \textstyle\begin{cases} x, & x=y,\\ x+y& \text{otherwise}. \end{cases} $$
Then \((X,p)\) is a θ-complete partial cone metric space. We can define a partial order on X as follows:
$$x\sqsubseteq y \quad \text{if and only if}\quad x(t)\leq y(t)\quad \text{for all } t\in[0,1]. $$
Then \((X,p,\sqsubseteq)\) is a θ-complete partially ordered partial cone metric space. For every fixed \(r\in[0,1)\), define \(T:X\to X\) by
$$Tx(t)= \textstyle\begin{cases} 0 & \text{if } t\in[0,1] \text{ such that } x(t)=0 ,\\ \frac{2n-1}{2}rt+\frac{2n-1}{4n}rx(t) &\text{if } t\in[0,1] \text{ such that } 2n-1\leq x(t)\leq2n \text{ for } n\in Z^{+}, \\ nrt+\frac{n}{2n+1}rx(t) &\text{if } t\in[0,1] \text{ such that } 2n\leq x(t)\leq2n+1 \text{ for } n\in Z^{+}. \end{cases} $$
Thus, for all \(x\in X\), we consider the following three cases:
-
Case 1. If \(t\in[0,1]\) such that \(x(t)=0\), then \(Tx(t)=x(t)\).
-
Case 2. If \(t\in[0,1]\) such that \(2n-1\leq x(t)\leq2n\), then
$$Tx(t)=\frac{2n-1}{2}rt+\frac{2n-1}{4n}rx(t)\leq\frac{2n-1}{2}r+ \frac {2n-1}{2}r\leq rx(t). $$
-
Case 3. If \(t\in[0,1]\) such that \(2n\leq x(t)\leq2n+1\), then
$$Tx(t)=nrt+\frac{n}{2n+1}rx(t)\leq nr+ nr\leq rx(t). $$
In all cases, for all \(x\in X\) and \(t\in[0,1]\), we have \(Tx(t)\leq rx(t)\). Hence, for all \(x,y\in X\), \(x\sqsubseteq y\), we have
$$p(Tx,Ty)\preceq rp(x,y)\preceq r U(x,y), $$
where \(U(x,y)\in\{p(x,y),p(x,Tx),p(y,Ty),\frac{p(x,Ty)+p(y,Tx)}{2}\}\), which ensures that condition (2.1) is satisfied. Also, conditions (i)-(iii) of Theorem 2.1 are satisfied. Following the Theorem 2.1, we deduce that T has a fixed point in X; indeed, \(x=\theta\) is a fixed point of T.
Theorem 2.2
Let
\((X,p,\sqsubseteq)\)
be a partially ordered partial cone metric space over a solid cone
P
of a normed vector space
\((E,\Vert \cdot \Vert )\). Let
\(S,T:X\to X\)
be such that
T
is an
S-nondecreasing mapping with respect to ⊑, \(TX\subseteq SX\), and
SX
is a
θ-complete subset of
X. Define
\(\psi:[0,1)\to(\frac{1}{2},1]\)
as in Theorem
2.1. Suppose that there exists
\(r\in[0,1)\)
such that
$$ \psi(r)p(Sx,Tx)\preceq p(Sx,Sy)\quad \textit{implies} \quad p(Tx,Ty)\preceq r U(Sx,Sy) $$
(2.8)
for all comparable
\(Sx,Sy\in X\), where
\(U(Sx,Sy)\in\{ p(Sx,Sy),p(Sx,Tx),p(Sy,Ty),(p(Sx,Ty)+p(Sy,Tx))/{2}\}\). Suppose that the following conditions hold:
-
(i)
there exists
\(x_{0}\in X\)
such that
\(Sx_{0}\sqsubseteq Tx_{0}\);
-
(ii)
for a nondecreasing sequence
\(x_{n}\stackrel{\tau_{p}}{\to} x\), we have
\(x_{n}\sqsubseteq x\)
for all
\(n\in N\);
-
(iii)
for two nondecreasing sequences
\(\{x_{n}\}, \{y_{n}\}\subseteq X\)
such that
\(x_{n}\sqsubseteq y_{n}\), \(x_{n}\stackrel{\tau_{p}}{\to} x\), and
\(y_{n} \stackrel{\tau_{p}}{\to} y\)
as
\(n\to\infty\), we have
\(x\sqsubseteq y\);
-
(iv)
the set of points of coincidence of
S
and
T
is totally ordered, and
S, T
are weakly compatible.
Then
S
and
T
have a unique common fixed point in X.
Proof
By Lemma 1.1 there exists \(Y\subseteq X\), such that \(SY=SX\) and \(S:Y\to X\) is one-to-one. Define \(f:SY\to SX\) by \(fSx=Tx\) for all \(Sx\in SY\).
Since S is one-to-one on Y, f is well defined. Note that, for all comparable \(Sx,Sy\in SY\),
$$\psi(r)p(Sx,fSx)\preceq p(Sx,Sy) \quad \text{implies} \quad p(fSx,fSy)\preceq r U(Sx,Sy), $$
where \(U(Sx,Sy)\in\{p(Sx,Sy),p(Sx,fSx),p(Sy,fSy),\frac {p(Sx,fSy)+p(Sy,fSx)}{2}\}\).
Since T is S-nondecreasing, we have that f is nondecreasing. In fact, \(Sx\sqsubseteq Sy\) implies \(Tx\sqsubseteq Ty\), and hence \(fSx=Tx\sqsubseteq Ty=fSy\). Since SY is θ-complete, by Theorem 2.1 we get that f has a fixed point on SY, say Sz. Then \(z= y\) is a coincidence point of S and T, that is, \(Tz=fSz=Sz\).
Now, we prove that S and T have a unique coincidence point. Suppose that w is another coincidence point of S and T with \(z\neq w\). Then
$$\psi(r)p(Sz, Tz)\preceq p(Sz,Sw), $$
and by (2.8) we have
$$ p(Tz,Tw)\preceq r U(Sz,Sw), $$
(2.9)
where \(U(Sz,Sw)\in\{p(Sz,Sw),p(Sz,Tz),p(Sw,Tw),\frac {p(Sz,Tw)+p(Sw,Tz)}{2}\}\). Since \(Sz=Tz\) and \(Sw=Tw\), it follows from (2.9) that
$$p(Tz,Tw)\preceq rU(Tz,Tw), $$
where \(U(Tz,Tw)\in\{p(Tz,Tw),p(Tz,Tz),p(Tw,Tw),\frac {p(Tz,Tw)+p(Tw,Tz)}{2}\}= \{p(Tz,Tw),p(Tz,Tz), p(Tw,Tw)\}\), which is a contradiction. Hence, \(z=w\). Let \(v=Sz=Tz\). Since S and T are weakly compatible, we have \(Sv=STz=TSz=Tv\). Then v is also a coincidence point of S and T, Thus, \(v=z\) by uniqueness. Therefore, z is the unique common fixed point of S and T. □