 Research
 Open access
 Published:
Common best proximity points results for new proximal Ccontraction mappings
Fixed Point Theory and Applications volume 2016, Article number: 56 (2016)
Abstract
We define a new version of proximal Ccontraction and prove the existence and uniqueness of a common best proximity point for a pair of nonself functions. Then we apply our main results to get some fixed point theorems and we give an example to illustrate our results.
1 Introduction and preliminaries
Consider a pair \((A,B)\) of nonempty subsets of a metric space \((X, d)\). Assume that f is a function from A into B. An \(w \in A\) is said to be a best proximity point whenever \(d(w, fw) = d(A,B)\), where \(d(A,B) = \inf\{d(s, t): s \in A, t\in B\}\).
Best proximity point theory of nonself functions was initiated by Fan [1] and Kirk et al. [2]; see also [3–13]. In this paper, we generalize some results of Kumam et al. [14] to obtain some new common best proximity point theorems. Next, by an example and some fixed point results, we support our main results and show some applications of them.
Definition 1.1
Consider nonself functions \(f_{1}, f_{2},\ldots,f_{n}: A \rightarrow B\). We say the a point \(s\in A\) is a common best proximity point of \(f_{1}, f_{2},\ldots,f_{n}\) if
Definition 1.2
([14])
Let \((X,d)\) be a metric space and \(\emptyset\neq A,B\subset X\). We say the pair \((A,B)\) has the Vproperty if for every sequence \(\{ t_{n}\}\) of B satisfying \(d(s,t_{n})\rightarrow d(s,B)\) for some \(s\in A\), there exists a \(t \in B\) such that \(d(s,t)= d(s,B)\).
2 Main results
We denote by Ψ the family of all continuous functions from \([0, +\infty) \times[0, +\infty)\) to \([0, +\infty)\) such that \(\psi (u,v)=0 \) if and only if \(u=v=0\) where \(\psi\in\Psi\).
Definition 2.1
Let \((X,d)\) be a metric space, \(\emptyset\neq A,B\subset X\), \(\alpha: A \times A \rightarrow[0,\infty)\) a function and \(f,g: A \rightarrow B\) nonself mappings. We say that \((f,g)\) is a triangular αproximal admissible pair, if for all \(p,q,r,t_{1},t_{2},s_{1},s_{2} \in A\),
Let \((X,d)\) be a metric space and \(\emptyset\neq A,B\subset X\). We define
Definition 2.2
Let \((X,d)\) be a metric space, \(\emptyset\neq A,B\subset X\), and \(f,g: A \rightarrow B\) nonself mappings. We say that \((f,g)\) is a generalized proximal Ccontraction pair if, for all \(s, t, p, q \in A\),
in which \(\psi\in\Psi\).
Definition 2.3
Let \((X,d)\) be a metric space, \(\emptyset\neq A,B\subset X\), \(\alpha: A \times A \rightarrow[0,\infty)\) a function and \(f,g: A \rightarrow B\) nonself functions. If, for all \(s, t, p, q \in A\),
imply
then \((f,g)\) is said to be an αproximal C1contraction pair.
If in the definition above, we replace (2) by
where \(l>0\), then \((f,g)\) is said to be an αproximal C2contraction pair.
Theorem 2.4
Let \((X,d)\) be a metric space and \(\emptyset\neq A,B\subset X\). Let A be complete and \(A_{0}\) nonempty set. Moreover, assume that the nonself functions \(f,g: A \rightarrow B\) satisfy:

(i)
f, g are continuous,

(ii)
\(f(A_{0})\subset B_{0}\) and \(g(A_{0}) \subset B_{0}\),

(iii)
\((f,g)\) is a generalized proximal Ccontraction pair,

(iv)
there exist \(s_{0}, s_{1} \in A_{0}\) such that \(d(s_{1},fs_{0})=d(A,B)\).
Then the functions f and g have a unique common best proximity point.
Proof
From (iv) we can get \(s_{0},s_{1} \in A_{0}\) such that
Since \(g(A_{0}) \subset B_{0}\), there exists \(s_{2} \in A_{0}\) such that \(d(s_{2},gs_{1})= d(A,B)\).
We continue this process and construct a sequence \(\{s_{n}\}\) such that
for each \(n\in\mathbb {N}\).
We divide our further derivation into four steps.
Step 1. We have
Put \(s=s_{2n+1}\) and \(t=s_{2n+2}\). From (1), we get
which implies \(d(s_{2n+1},s_{2n+2})\leq d(s_{2n},s_{2n+1})\).
Now, if we put \(d_{n}:=d(s_{n},s_{n+1})\), then we get \(d_{2n+1} \leq d_{2n}\). Also, we have \(d_{2n+2}\leq d_{2n+1}\), which implies that the sequence \(\{d_{n}\}\) is decreasing and so there is a \(d\ge0\) such that \(d_{n} \rightarrow d\) as \(n\rightarrow\infty\). Now, take \(n\rightarrow\infty\) in (6) and get
that is,
Take again \(n \rightarrow\infty\) in (6). By (7) and the continuity of ψ, we get
and so \(\psi(2d,0)=0\). By the properties of ψ, we get \(d=0\).
Step 2. We claim that \(\{s_{n}\}\) is a Cauchy sequence. By (5), we show that the subsequence \(\{s_{2n}\}\) of \(\{s_{n}\}\) is a Cauchy sequence in \(A_{0}\). Contrarily, let there exists an \(\epsilon>0\) for which the subsequences \(\{s_{2m(k)}\}\) and \(\{s_{2n(k)}\}\) of \(\{s_{2n}\}\) such that \(n(k)\) is the smallest integer satisfying, for all \(k > 0\),
which would imply that
Using the triangular inequality, (8), and (9), we would get
Letting \(k\rightarrow\infty\) in the above inequality and using (5), we would get
On the other hand, we have
Now, we would have
By the triangular inequality, we have
Letting again \(k\rightarrow\infty\) in the above inequality and using (5) and (10), we would get
Also, we can get \(\lim_{k\rightarrow\infty}d(s_{2m(k)1},s_{2n(k)+1})\leq\epsilon\), and so
From (1) we have
Taking \(k \rightarrow\infty\) in the above inequality and using (10), (11), (12), and the continuity of ψ, we would obtain
and therefore \(\psi(\epsilon,\epsilon) = 0\), which would imply \(\epsilon= 0\), a contradiction. Thus, \(\{s_{n}\}\) is a Cauchy sequence. Since A is complete, there is a \(z \in A\) such that \(s_{n} \rightarrow z\).
Step 3. Now, from
taking \(n \rightarrow\infty\) and by continuity of f and g, we have \(d(z,fz) = d(z,gz) = d(A,B)\). So, z is a common best proximity point of the mappings f and g.
Step 4. Now, let f and g have another common best proximity point, say w, such that
From (1) we have
whence \(d(z,w) = 0\), and therefore \(z=w\). □
Theorem 2.5
Let \((X,d)\) be a metric space and \(\emptyset\neq A,B\subset X\) such that A is complete and \(A_{0}\) is nonempty. Moreover, suppose that the nonself functions \(f,g: A \rightarrow B\) satisfy:

(i)
f, g are continuous,

(ii)
\(f(A_{0})\subset B_{0}\) and \(g(A_{0}) \subset B_{0}\),

(iii)
\((f,g)\) is an αproximal C1contraction pair or an αproximal C2contraction pair,

(iv)
\((f,g)\) is a triangular αproximal admissible pair,

(iv)
there exist \(s_{0}, s_{1} \in A_{0}\) such that \(d(s_{1},fs_{0})=d(A,B)\), \(\alpha(s_{1},s_{0}) \ge1\).
Then f and g have a common best proximity point. Furthermore, if \(z,w \in X\) are common best proximity points and \(\alpha(z,w)\ge1\), then common best proximity point is unique.
Proof
By (iv), we can find \(s_{0}, s_{1} \in A_{0}\) such that
Define the sequence \(\{s_{n}\}\) as in (4) of Theorem 2.4. Since \((f,g)\) is triangular αproximal admissible, we have \(\alpha(s_{n},s_{n+1}) \ge1\). Then
If \(s=s_{2n+1}\), \(t=s_{2n+2}\), \(p=s_{2n}\), \(q=s_{2n+1}\), and \((f,g)\) is an αproximal C1contraction pair or an αproximal C2contraction pair, then \((f,g)\) is a generalized proximal Ccontraction pair. Then Step 1 of the proof of Theorem 2.4 implies that \(\lim_{n\rightarrow\infty}d(s_{n},s_{n+1})=0\).
Now we prove that
Since \((f,g)\) is triangular αproximal admissible and
from (\(T_{2}\)) of Definition 2.1, we have
Again, since \((f,g)\) is triangular αproximal admissible and
from (\(T_{2}\)) of Definition 2.1 again, we have
By continuing this process, we get (16). If \(s=s_{2n(k)+1}\), \(t=s_{2m(k)}\), \(p=s_{2n(k)}\), \(q=s_{2m(k)1}\), then αproximal C1contraction (C2contraction) pair \((f,g)\) is a generalized proximal Ccontraction pair. Therefore by Step 2 of Theorem 2.4, there exists a \(z \in A\) such that \(s_{n} \rightarrow z\). Step 3 of Theorem 2.4 and continuity of f and g immediately imply that f and g have a common best proximity point z. If w is another common best proximity point of \((f,g)\), then, since \(\alpha(z,w) \ge1\), Step 4 implies that \(z=w\). □
Definition 2.6
Let \(\alpha:X \times X\rightarrow(\infty,+\infty)\) be a function and \(f,g: X \rightarrow X\) self mappings. We say that \((f,g)\) is a triangular αadmissible pair if

(i)
\(p,q \in X\), \(\alpha(p,q) \ge1 \Longrightarrow \alpha(fp,gq)\ge 1\) or \(\alpha(gp,fq)\ge1\),

(ii)
\(p, q, r \in X\), \(\bigl \{\scriptsize{ \begin{array}{l} \alpha(p,r)\ge1, \\ \alpha(r,q)\ge1, \end{array}} \bigr.\Longrightarrow\alpha(p,q) \ge1\).
The following corollary is a consequence of the last theorem.
Corollary 2.7
Let \((X,d)\) be a complete metric space and \(f,g: X \rightarrow X\). Moreover, let the self functions f and g satisfy:

(i)
f and g are continuous,

(ii)
there exists \(s_{0} \in X\) such that \(\alpha(s_{0},fs_{0})\ge1\),

(iii)
\((f,g)\) is a triangular αadmissible pair,

(iv)
for all \(p, q \in X\), \(\alpha(p,q) d(fp,gq) \leq\frac{1}{2}(d(p,gq) + d(q,fp))\psi (d(p,gq),d(q,fp))\) (or \((\alpha(p,q)+l)^{d(fp,gq)} \leq(l+1)^{\frac{1}{2}(d(p,gq) + d(q,fp))\psi(d(p,gq),d(q,fp))} \)).
Then f and g have a common fixed point. Moreover, if \(x,y \in X\) are common fixed points and \(\alpha(x,y)\ge1\), then the common fixed point of f and g is unique, that is, \(x=y\).
Now, we remove the continuity hypothesis of f and g, and get the following theorem.
Theorem 2.8
Let \((X,d)\) be a metric space and \(\emptyset\neq A,B\subset X\). Let A be complete, the pair \((A,B)\) have the Vproperty, and \(A_{0}\) be nonempty. Moreover, suppose that the nonself mappings \(f,g: A \rightarrow B\) satisfy:

(i)
\(f(A_{0})\subset B_{0}\) and \(g(A_{0}) \subset B_{0}\),

(ii)
\((f,g)\) is a generalized proximal Ccontraction pair,

(iii)
there are \(s_{0}, s_{1} \in A_{0}\) such that \(d(s_{1},fs_{0})=d(A,B)\).
Then the functions f and g have unique common best proximity point.
Proof
By Theorem 2.4, there is a Cauchy sequence \(\{s_{n}\} \subset A\) and \(z\in A\) such that (4) holds and \(s_{n} \rightarrow z\). Moreover, we have
We take \(n \rightarrow\infty\) in the above inequality, and we get
Since the pair \((A,B)\) has the Vproperty, there is a \(p \in B\) such that \(d(z,p) = d(A,B)\) and so \(z \in A_{0} \). Moreover, since \(f(A_{0}) \subset B_{0}\), there is a \(q \in A\) such that
Furthermore \(d(s_{2n+2},gs_{2n+1}) = d(A,B)\) for every \(n\in\mathbb{N}\).
Since \((f,g)\) is a generalized proximal Ccontraction pair, we have
Letting \(n \rightarrow\infty\) in the above inequality, we have
Thus \(d(z,q)=0\), which implies that \(z=q\). Then, by (18), z is a best proximity point of f.
Similarly, it is easy to prove that z is a best proximity point of g. Then z is a common best proximity point of the functions f and g. By the proof of Theorem 2.4 we conclude that f and g have unique common best proximity point. □
Theorem 2.9
Let \((X,d)\) be a metric space and \(\emptyset\neq A,B\subset X\). Let A be complete, the pair \((A,B)\) have the Vproperty and \(A_{0}\) be a nonempty set. Moreover, suppose that the nonself functions \(f,g: A \rightarrow B\) satisfy:

(i)
\(f(A_{0})\subset B_{0}\) and \(g(A_{0}) \subset B_{0}\),

(ii)
\((f,g)\) is an αproximal C1contraction pair or an αproximal C2contraction pair,

(iii)
\((f,g)\) is a triangular αproximal admissible pair,

(iv)
there exist \(s_{0}, s_{1} \in A_{0}\) such that \(d(s_{1},fs_{0})=d(A,B)\), \(\alpha(s_{1},s_{0}) \ge1\),

(v)
if \(\{s_{n}\}\) is a sequence in A such that \(\alpha (s_{n},s_{n+1})\ge1\) and \(s_{n} \rightarrow s_{0}\) as \(n \rightarrow\infty \), then \(\alpha(s_{n},s_{0})\ge1\) for all \(n\in\mathbb{N} \cup\{0\}\).
Then f and g have a common best proximity point. Moreover, if \(z,w \in X\) are common best proximity points and \(\alpha (z,w)\ge1\), then the common best proximity point is unique.
Proof
We can derive from the proof of Theorem 2.5 that there exist a sequence \(\{s_{n}\}\) and z in A such that \(s_{n} \rightarrow z\) and \(\alpha(s_{n},s_{n+1}) \ge1\). Also, by (v), \(\alpha(s_{n},z)\ge1\) for every \(n\in\mathbb{N} \cup\{ 0\}\). Let \(s=q\), \(t=s_{2n+2}\), \(p=z\), \(q=s_{2n+1}\). If \((f,g)\) is an αproximal C1contraction pair or αproximal C2contraction pair, then \((f,g)\) is a generalized proximal Ccontraction pair. Then by the proof of the last theorem, z is a common best proximity of f and g. □
The following corollary is an immediate consequence of the main theorem of this section.
Corollary 2.10
Let \((X,d)\) be a complete metric space and \(f,g: X \rightarrow X\). Moreover, let the self functions f and g satisfy:

(i)
\((f,g)\) is a triangular αadmissible pair,

(ii)
there exists an \(s_{0} \in X\) such that \(\alpha(s_{0},fs_{0})\ge1\),

(iii)
if \(\{s_{n}\}\) is a sequence in A such that \(\alpha (s_{n},s_{n+1})\ge1\) and \(s_{n} \rightarrow s_{0} \in A\) as \(n \rightarrow \infty\), then \(\alpha(s_{n},s_{0})\ge1\) for all \(n \in\mathbb{N}\cup\{ 0\}\),

(iv)
for all \(x,y \in X\), \(\alpha(p,q) d(fp,gq) \leq\frac{1}{2}(d(p,gq) + d(q,fp))\psi (d(p,gq),d(q,fp))\) (or \((\alpha(p,q)+l)^{d(fp,gq)} \leq(l+1)^{\frac{1}{2}(d(p,gq) + d(q,fp))\psi(d(p,gq),d(q,fp))} \)).
Then f and g have a common fixed point. Moreover, if \(x,y \in X\) are common fixed points and \(\alpha(x,y)\ge1\), then the common fixed point of f and g is unique, that is, \(x=y\).
In order to illustrate our results, we present the following example.
Example 2.11
Consider \(X=\mathbb{R}\) with the usual metric \(d(x,y)=xy\), \(A=\{4, 0, 4\}\), and \(B=\{2, 1, 2\}\). Then A and B are nonempty closed subsets of X with \(d(A,B)=1\), \(A_{0}=\{0\}\), and \(B_{0}=\{1\}\). We define \(f,g: A \rightarrow B\) by
and \(\psi: [0,\infty) \times[0,\infty) \rightarrow[0,\infty)\) by \(\psi(s,t)=st\).
It is immediate to see that \(f(A_{0})\subset B_{0}\) and \(g(A_{0})\subset B_{0}\). Also, if
then \(u=v=p=0\) and \(q \in A\) and therefore (1) is satisfied. Hence all the conditions of Theorem 2.4 hold for this example and clearly 0 is the unique common best proximity of f and g.
Example 2.12
Let \(X = [0,1]\times[0,1]\) and d be the Euclidean metric. Let
Then \(d(A,B)=1\), \(A_{0} = A\), and \(B_{0} =B\). We define \(f,g: A \rightarrow B\) by
Define \(\alpha: A \times A \rightarrow[0,\infty)\) by
and \(\psi: [0,\infty) \times[0,\infty) \rightarrow[0,\infty)\) by
Then \(f(A_{0})\subset B_{0}\), \(g(A_{0})\subset B_{0}\). Assume that
Hence, \(u = p\) and \(v = (0,1)\). If \(p=(0,1)\), then \(u=v\) and (2) holds. If \(p \neq(0,1)\), then \(\alpha(p,q) = 0\) and (2) holds, which implies that \((f,g)\) is an αproximal C1contraction. Hence, all the hypotheses of Theorem 2.5 are satisfied. Moreover, if \(\{s_{n}\}\) is a sequence such that \(\alpha(s_{n},s_{n+1})\ge 1\) for every \(n \in{\mathbb{N}\cup\{0\}}\) and \(s_{n} \rightarrow s_{0}\), then \(s_{n} = (0,1)\) for all \(n \in{\mathbb{N}\cup\{0\}}\) and hence \(s_{0}=(0,1)\). Then \(\alpha(s_{n},s_{0}) \ge1\) for every \(n \in{\mathbb{N}\cup\{0\}}\). Clearly, \((A,B)\) has the Vproperty and then all the conclusions of Theorem 2.9 hold. Clearly \((0,1)\) is the unique common best proximity of f and g.
The following example shows that the triangular αproximal admissible condition for \((f,g)\) cannot be relaxed from Theorem 2.9.
Example 2.13
Let \(X = [0,1]\times[0,1]\) and d be the Euclidean metric. Let
Then \(d(A,B)=1\), \(A_{0} = A\), and \(B_{0} =B\). We define \(f,g: A \rightarrow B\) by
and \(g(0,m)=(1,1)\). Also we define \(\alpha: A \times A \rightarrow [0,\infty)\) by
and \(\psi: [0,\infty) \times[0,\infty) \rightarrow[0,\infty)\) by
It is easy to see that all the required hypotheses of Theorem 2.9 are satisfied unless (iii). Clearly f and g do not have a common best proximity point. It is worth noting that the pair \((f, g)\) does not have the triangular αproximal admissible property.
References
Fan, K: Extensions of two fixed point theorems of F. E. Browder. Math. Z. 112, 234240 (1969)
Kirk, WA, Reich, S, Veeramani, P: Proximinal retracts and best proximity pair theorems. Numer. Funct. Anal. Optim. 24, 851862 (2003)
Mongkolkeha, C, Sintunavarat, W: Best proximity points for multiplicative proximal contraction mapping on multiplicative metric spaces. J. Nonlinear Sci. Appl. 8(6), 11341140 (2015)
Haddadi, MZ: Best proximity point iteration for nonexpensive mapping in Banach spaces. J. Nonlinear Sci. Appl. 7(2), 126130 (2014)
Di Bari, C, Suzuki, T, Vetro, C: Best proximity points for cyclic MeirKeeler contractions. Nonlinear Anal. 69, 37903794 (2008)
Gabeleh, M: Proximal weakly contractive and proximal nonexpansive nonselfmappings in metric and Banach spaces. J. Optim. Theory Appl. 158, 615625 (2013)
Akbar, F, Kutbi, MA, Shah, MH, Shafqat, N: Random coupled and tripled best proximity results with cyclic contraction in metric spaces. J. Nonlinear Sci. Appl. 9(3), 940956 (2016)
Aydi, H, Felhi, A, Karapınar, E: On common best proximity points for generalized αψproximal contractions. J. Nonlinear Sci. Appl. 9(5), 26582670 (2016)
Aydi, H, Felhi, A: Best proximity points for cyclic KannanChatterjeaCiric type contractions on metriclike spaces. J. Nonlinear Sci. Appl. 9(5), 24582466 (2016)
Sadiq Basha, S, Shahzad, N: Best proximity point theorems for generalized proximal contractions. Fixed Point Theory Appl. 2012, 42 (2012)
Suzuki, T, Kikkawa, M, Vetro, C: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 29182926 (2009)
Pragadeeswarar, V, Marudai, M, Kumam, P: Best proximity point theorems for multivalued mappings on partially ordered metric spaces. J. Nonlinear Sci. Appl. 9(4), 19111921 (2016)
Latif, A, Abbas, M, Hussain, A: Coincidence best proximity point of \(F_{g}\)weak contractive mappings in partially ordered metric spaces. J. Nonlinear Sci. Appl. 9(5), 24482457 (2016)
Kumam, P, Salimi, P, Vetro, C: Best proximity point results for modified αproximal Ccontraction mappings. Fixed Point Theory Appl. 2014, 99 (2014)
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Lo’lo’, P., Vaezpour, S.M. & Saadati, R. Common best proximity points results for new proximal Ccontraction mappings. Fixed Point Theory Appl 2016, 56 (2016). https://doi.org/10.1186/s1366301605450
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s1366301605450