In this section, we shall establish the existence and uniqueness of coupled fixed point for single-valued mixed monotone operators, and then we extend the study to the multi-valued case.
To verify the main results, we need the following lemma.
Lemma 4.1
If
\((X,\|\cdot\|)\)
is a Banach space, P
is a normal and reproducing cone in
X, then
-
(1)
\(X \times X\)
is a Banach space with the norm
\(\|(x,y)\|=\max \{\|x\|,\|y\|\}\).
-
(2)
\(P\times(-P)\)
is a normal and reproducing cone in
\(X \times X\).
Proof
We only prove assertion (2). Noting that a partial order ≲ of \(X\times X\) can be induced by \(P\times(-P)\), we have
$$(x_{1},y_{1})\lesssim (x_{2},y_{2})\quad \Longleftrightarrow\quad x_{2}-x_{1}\in P, y_{2}-y_{1}\in(-P)\quad\Longleftrightarrow\quad x_{1}\leq x_{2}, y_{2}\leq y_{1}. $$
-
(i)
If \((0,0)\lesssim(x_{1},y_{1})\lesssim (x_{2},y_{2})\), then \(0\leq x_{1}\leq x_{2}\), \(0\geq y_{1}\geq y_{2}\), or equivalently, \(0\leq-y_{1}\leq-y_{2}\). Since P is normal,
$$\|x_{1}\|\leq K\|x_{2}\|,\qquad \|y_{1}\|\leq K \|y_{2}\|, $$
where K is the normal constant of P.
Hence, we know
$$\bigl\| (x_{1},y_{1})\bigr\| =\max\bigl\{ \|x_{1}\|, \|y_{1}\|\bigr\} \leq K\max\bigl\{ \|x_{2}\|,\|y_{2}\|\bigr\} =K\bigl\| (x_{2},y_{2})\bigr\| , $$
which implies \(P\times(-P)\) is normal with normal constant K.
-
(ii)
For arbitrary \((x,y)\in X \times X\), since P is reproducing, there exist \(u_{1},v_{1},u_{2},v_{2}\in P\), such that \(x=u_{1}-v_{1}\), \(y=u_{2}-v_{2}\), or equivalently, \(y=(-v_{2})-(-v_{1})\). Then
$$(x,y)=(u_{1}, -v_{2})-(u_{2}, -v_{1})\in P\times(-P)-P\times(-P), $$
which implies \(P\times(-P)\) is a reproducing cone in \(X \times X\).
□
Theorem 4.2
Suppose
\(T:X\times X\rightarrow X\)
is a mixed monotone operator. Assume there exist two linear operators
\(L,S:X\rightarrow X\)
with
\(\|L\|+\|S\| <1\), \(L(P)\subset P\), \(S(P)\subset P\)
such that, for any
\(x_{1}, x_{2}, y_{1}, y_{2}\in X\), \(x_{1}\leq x_{2}\), \(y_{2}\leq y_{1}\)
$$T(x_{2},y_{2})- T(x_{1},y_{1})\leq L(x_{2}-x_{1})+S(y_{1}-y_{2}). $$
Then
T
has a unique coupled fixed point
\((\overline{x},\overline{y})\)
in
\(X\times X\). Moreover, for every
\((x,y)\in X\times X\),
$$\lim_{n\rightarrow\infty}T^{n}(x,y) = \overline{x},\qquad\lim _{n\rightarrow \infty}T^{n}(y,x) = \overline{y}. $$
Proof
Define a new mapping \(F:X\times X\rightarrow X\times X\) as follows, for \((x,y)\in X\times X\):
$$F(x,y)=\bigl(T(x,y),T(y,x)\bigr). $$
Then T has a coupled fixed point if and only if F has a fixed point.
When T is mixed monotone, then \(\forall x_{1},x_{2},y_{1},y_{2}\in X\),
$$x_{1}\leq x_{2}, y_{2}\leq y_{1}\quad \Rightarrow\quad T(x_{1},y_{1})\leq T(x_{2},y_{2}), T(y_{1},x_{1})\geq T(y_{2},x_{2}), $$
which means
$$(x_{1},y_{1})\lesssim (x_{2},y_{2})\quad \Rightarrow\quad F(x_{1},y_{1})\lesssim F(x_{2},y_{2}) $$
i.e.
F is increasing.
Furthermore, by assumption, for any \(x_{1}, x_{2}, y_{1}, y_{2}\in X\), \(x_{1}\leq x_{2}\), \(y_{2}\leq y_{1}\)
$$T(x_{2},y_{2})- T(x_{1},y_{1})\leq L(x_{2}-x_{1})+S(y_{1}-y_{2})=L(x_{2}-x_{1})-S(y_{2}-y_{1}), $$
then
$$T(y_{1},x_{1})-T(y_{2},x_{2})\leq L(y_{1}-y_{2})+S(x_{2}-x_{1}), $$
or equivalently,
$$T(y_{2},x_{2})-T(y_{1},x_{1}) \geq-L(y_{1}-y_{2})-S(x_{2}-x_{1})=-S(x_{2}-x_{1})+L(y_{2}-y_{1}), $$
which implies
$$F(x_{2},y_{2})-F(x_{1},y_{1})\lesssim \Phi\bigl[(x_{2},y_{2})-(x_{1},y_{1}) \bigr],\quad \forall (x_{1},y_{1})\lesssim (x_{2},y_{2}), $$
where \(\Phi:X\times X\rightarrow X\times X\) is defined as
$$\Phi(x,y)=\bigl(L(x)-S(y),-S(x)+L(y)\bigr). $$
Note that
-
(1)
Φ is a linear operator and \(\Phi(P\times(-P))\subset P\times(-P)\).
In fact, since L, S is linear, Φ is a linear operator on \(X\times X\).
If \((x,y)\in P\times(-P)\), i.e.
\(x\geq0\), \(y\leq0\), due to the positivity of L, S, we have \(L(x)\geq0\), \(L(y)\leq0\), \(S(x)\geq0\), \(S(y)\leq0\), then
$$L(x)-S(y)\geq0,\qquad -S(x)+L(y)\leq0 $$
i.e.
$$\Phi(x,y)\in P\times(-P). $$
-
(2)
Φ is bounded and its operator norm \(\|\Phi\|\leq\|L\| +\|S\|<1\).
In fact,
$$\begin{aligned} \|\Phi\|&= \sup_{(x,y)\in X\times X, \|(x,y)\|=1}\bigl\| \Phi(x,y )\bigr\| \\ &= \sup_{(x,y)\in X\times X, \|(x,y)\|=1}\max\bigl\{ \bigl\| L(x)-S(y)\bigr\| ,\bigl\| L(y)-S(x)\bigr\| \bigr\} \\ &\leq\sup_{(x,y)\in X\times X, \|(x,y)\|=1}\max\bigl\{ \bigl\| L(x)\bigr\| +\bigl\| S(y)\bigr\| ,\bigl\| L(y)\bigr\| +\bigl\| S(x)\bigr\| \bigr\} \\ &\leq \sup_{(x,y)\in X\times X, \max \{\|x\|,\|y\| \}=1}\max\bigl\{ \|L\| \|x\|+\|S\|\|y\|,\|L\|\|y\|+\|S\| \|x\| \bigr\} \\ &\leq \|L\|+\|S\|. \end{aligned}$$
Then, by [4] Theorem 3.2, F has a unique fixed point \((\overline {x},\overline{y})\in X\times X\). Moreover, for every \((x,y)\in X\times X\),
$$\lim_{n\rightarrow\infty}F^{n}(x,y) = (\overline{x},\overline{y}). $$
Hence, T has a unique coupled fixed point \((\overline{x},\overline {y})\) in \(X\times X\). Moreover, for every \((x,y)\in X\times X\),
$$\lim_{n\rightarrow\infty}T^{n}(x,y) = \overline{x},\qquad\lim _{n\rightarrow \infty}T^{n}(y,x) = \overline{y}. $$
This ends the proof. □
Remark 4.3
If, in addition, the positive linear operators L, S are commutative, i.e.
\(LS=SL\), then the requirement \(\|L\|+\|S\|<1\) can be relaxed to \(r(L)+r(S)<1\).
In this case, by mathematical induction, we have
$$\Phi^{2n}(x,y)=\bigl(\bigl(L^{2}+S^{2} \bigr)^{n}(x),\bigl(L^{2}+S^{2}\bigr)^{n}(y) \bigr),\quad \forall(x,y)\in X\times X, $$
then
$$\begin{aligned} \bigl\| \Phi^{2n}\bigr\| &= \sup_{(x,y)\in X\times X, \|(x,y)\|=1}\bigl\| \Phi(x,y)\bigr\| \\ &= \sup_{(x,y)\in X\times X, \|(x,y)\|=1}\max\bigl\{ \bigl\| \bigl(L^{2}+S^{2} \bigr)^{n}(x)\bigr\| ,\bigl\| \bigl(L^{2}+S^{2} \bigr)^{n}(y)\bigr\| \bigr\} \\ &\leq \bigl\| \bigl(L^{2}+S^{2}\bigr)^{n}\bigr\| . \end{aligned}$$
Hence, by Gelfand’s formula
$$\begin{aligned} r(\Phi)&= \lim_{n\rightarrow\infty} {\bigl\| (\Phi)^{n}\bigr\| }^{\frac{1}{n}} \\ &= \lim_{n\rightarrow\infty} {\bigl\| (\Phi)^{2n}\bigr\| }^{\frac{1}{2n}} \\ &\leq \lim_{n\rightarrow\infty} {\bigl\| \bigl(L^{2}+S^{2} \bigr)^{n}\bigr\| }^{\frac{1}{2n}} \\ &=\sqrt{r\bigl(L^{2}+S^{2}\bigr)} \\ &\leq \sqrt{{r(L)}^{2}+{r(S)}^{2}} \\ &\leq r(L)+r(S) \\ &< 1. \end{aligned}$$
Then, by [4] Theorem 3.2, F has a unique fixed point \((\overline {x},\overline{y})\in X\times X\).
Now, we extend the study to the multi-valued case.
In the same manner as the proof of Theorem 3.1 and Theorem 4.2, we can verify the following coupled fixed point theorem for multi-valued mixed monotone operators.
Theorem 4.4
Suppose
\(T:X\times X\rightarrow2^{X}\setminus\{\phi\}\)
is a multi-valued mixed monotone operator. Assume the following conditions are satisfied:
-
(1)
For any
\((x,y)\in X\times X\), \(T(x,y)\)
is a nonempty and closed subset of
X.
-
(2)
There exist two linear operators
\(L,S:X\rightarrow X\), \(\|L\| +\|S\|<1\), \(L(P)\subset P\), \(S(P)\subset P\)
such that, for any
\(x_{1}, x_{2}, y_{1}, y_{2}\in X\), \(x_{1}\leq x_{2}\), \(y_{2}\leq y_{1}\)
imply:
-
(i)
for any
\(u\in T(x_{1},y_{1})\), there exists
\(v\in T(x_{2},y_{2})\)
$$0\leq v-u \leq L(x_{2}-x_{1})+S(y_{1}-y_{2}), $$
-
(ii)
for any
\(v\in T(x_{2},y_{2})\), there exists
\(u\in T(x_{1},y_{1})\)
$$0\leq v-u \leq L(x_{2}-x_{1})+S(y_{1}-y_{2}). $$
Then
T
has a coupled fixed point in
\(X\times X\).