- Research
- Open Access
- Published:
Rectangular cone b-metric spaces over Banach algebra and contraction principle
Fixed Point Theory and Applications volume 2017, Article number: 14 (2017)
Abstract
Rectangular cone b-metric spaces over a Banach algebra are introduced as a generalization of metric space and many of its generalizations. Some fixed point theorems are proved in this space and proper examples are provided to establish the validity and superiority of our results. An application to solution of linear equations is given which illustrates the proper application of the results in spaces over Banach algebra.
1 Introduction
Liu and Xu in [1] reported the concept of cone metric space over Banach algebra (in short CMS-BA) and proved contraction principles in such space. They replaced the usual real contraction constant with a vector constant and scalar multiplication with vector multiplication in their results and also furnished proper examples to show that their results were different from those in cone metric space and metric space. The concept defined by Liu and Xu [1] was further generalized by Huang and Radenovic [2] by the introduction of a cone b-metric space over a Banach algebra (in short CbMS-BA).
In this paper we have introduced the concept of a rectangular cone b-metric space over a Banach algebra (in short RCbMS-BA) and proved the Banach contraction principle and weak Kannan contraction principle in this space. Simple examples are given illustrating the validity and superiority of our results. We have also given an application of our result to a solution of a system of linear equations.
2 Preliminaries
A linear space \(\mathcal{A}\) over \({K} \in\{\mathbb{R},\mathbb {C}\}\) is an algebra if for each ordered pair of elements \(x,y \in\mathcal{A}\), a unique product \(xy\in\mathcal{A}\) is defined such that for all \(x,y,z \in\mathcal{A}\) and scalar α:
-
(i)
\((xy)z = x(yz)\);
-
(iia)
\(x(y + z) = xy + xz\);
-
(iib)
\((x + y)z = xz + yz\);
-
(iii)
\(\alpha(xy) = (\alpha x)y = x(\alpha y)\).
A Banach algebra is a Banach space \(\mathcal{A}\) over \({K} \in\{ \mathbb{R},\mathbb{C}\}\) such that, for all \(x,y \in\mathcal{A,}\) \(\|xy\|\leq\|x\|\|y\|\).
For a given cone \({P}\subset\mathcal{A}\) and \(x,y \in\mathcal {A}\), we say that \(x\preceq y\) if and only if \(y-x\in{P}\). Note that ⪯ is a partial order relation defined on \(\mathcal{A}\). For more details on the basic concepts of a Banach algebra, solid cone, unit element e, zero element θ, invertible elements in Banach algebra etc. the reader may refer to [1–3].
For basic properties of Banach algebra and spectral radius refer to [1, 4].
In what follows \(\mathcal{A}\) will always denote a Banach algebra, P a solid cone in \(\mathcal{A}\) and e the unit element of \(\mathcal{A}\).
Definition 2.1
[5]
Let P be a solid cone in a Banach space E. A sequence \(\{u_{n}\}\subset P\) is said to be a c-sequence if for each \(c\gg\theta\) there exists a natural number N such that \(u_{n}\ll c\) for all \(n>N\).
Remark 2.2
For more on c-sequences see [2, 3, 5, 6].
Lemma 2.3
[5]
Let E be a Banach space.
-
(i)
If \(a,b,c\in E\) and \(a\preceq b\ll c\), then \(a\ll c\).
-
(ii)
If \(\theta\preceq a\ll c\) for each \(c\gg\theta\), then \(a=\theta\).
3 Main results
In this section first we introduce the definition of a rectangular cone b-metric space over a Banach algebra (in short RCbMS-BA) and furnish examples to show that this concept is more general than that of CMS-BA and CbMS-BA. We then define convergence and a Cauchy sequence in a RCbMS-BA and then prove fixed point results in this space.
Definition 3.1
Let χ be a nonempty set and \(d_{rcb}:\chi\times\chi\rightarrow \mathcal{A}\) be such that for all \(x,y,u,v\in\chi\), \(x \neq u\), \(v\neq y\):
-
(RCbM1)
\(\theta\preceq d_{rcb}(x,y)\) and \(d_{rcb}(x,y)=\theta\) if and only if \(x=y\);
-
(RCbM2)
\(d_{rcb}(x,y)=d_{rcb}(y,x)\);
-
(RCbM3)
there exist \(s\in{P}\), \(e\preceq s\) such that \(d_{rcb}(x,y)\preceq s[d_{rcb}(x,u)+d_{rcb}(u,v)+d_{rcb}(v,y)]\).
Then \(d_{rcb}\) is called a rectangular cone b-metric on χ and \((\chi,d_{rcb})\) is called a rectangular cone b-metric space over a Banach algebra (in short RCbMS-BA) with coefficient s. If \(s=e\) we say that \((\chi,d_{rcb})\) is a rectangular cone metric space over a Banach algebra (in short RCMS-BA).
In the above definition if condition RCbM3 is replaced with
-
(CbM3)
\(d_{rcb}(x,y)\preceq s[d_{rcb}(x,z)+d_{rcb}(z,y)]\) for all \(x,y,z\in\chi\),
then \((\chi,d_{rcb})\) is a CbMS-BA as defined in [2].
Note that every CMS-BA is a CbMS-BA and CbMS-BA is a RCbMS-BA but the converse is not necessarily true. Inspired by [1, 2] we furnish the following examples, which will establish our claim.
Example 3.2
Let \(\mathcal{A} = \{a = (a_{i,j})_{2\times2} : a_{i,j}\in\mathbb {R}, 1\le i,j \le2\}\), \(\|a\| = \sum_{1\le i,j\le2}|a_{i,j}|\), \(P = \{a\in\mathcal{A} : a_{i,j}\ge0, 1\le i,j\le2\}\) be a cone in \(\mathcal{A}\). Let \(\chi=B\cup\mathbb{N}\), where \(B=\{\frac {1}{n}: n\in\mathbb{N}\}\). Let \(d_{rcb}:\chi\times\chi \rightarrow\mathcal{A}\) be given by
Then \((\chi,d_{rcb})\) is a RCbMS-BA over \(\mathcal{A}\) with coefficient \(s= \bigl ({\scriptsize\begin{matrix}{}3&0\cr0&3\end{matrix}} \bigr ) \). But it is not possible to find \(s\in{P}\), \(e\preceq s\) satisfying condition CbM3 and so \((\chi,d)\) is not a CbMS-BA over a Banach algebra \(\mathcal{A}\).
Example 3.3
Let \(\chi= [0,2]\) and let \(\mathcal{A} = C_{R^{2}}(\chi )\). For \(\alpha= (f,g)\) and \(\beta= (u,v)\) in \(\mathcal{A}\), we define \(\alpha.\beta= (f.u,g.v)\) and \(\|\alpha\|=\max(\|f\|,\|g\|)\) where \(\|f\| = \sup_{x\in\chi}|f(x)|\). Then \(\mathcal{A}\) is a Banach algebra with unit \(e=(1,1)\), zero element \(\theta=(0,0)\)and \(P=\{ (f,g)\in\mathcal{A}:f(t)\geq0,g(t)\ge0, t\in\chi\}\) a cone in \(\mathcal{A}\). Consider \(d_{rcb}:\chi\times\chi\rightarrow \mathcal{A}\) given by
Clearly \((\chi,d_{rcb})\) is a RCbMS-BA over \(\mathcal{A}\) with \(s=(2,2)\). Again it is not possible to find a real number \(s\in {P}\), \(e \preceq s\) satisfying condition CbM3 and so \((\chi,d_{rcb})\) is not a CbMS-BA over a Banach algebra \(\mathcal{A}\).
For any \(a\in\chi\), the open sphere with center a and radius \(\lambda\succ \theta\) is given by
Let \(\mathcal{U} = \{Y\subseteq\chi: \forall x \in Y, \exists r\succ\theta, \mbox{ such that } B_{r}(x) \subseteq Z\} \). Then \(\mathcal{U}\) defines the rectangular b-metric topology for the RCbMS-BA \((\chi,d_{rcb})\).
The definitions of convergent sequence, Cauchy sequence, c-sequence and completeness in RCbMS-BA are along the same lines as for CbMS-BA given in [2] and so we omit these definitions.
Remark 3.4
We refer to Example 3.2 for the following:
-
(i)
Open balls in RCbMS-BA need not be an open set. For example \(B_{\lambda}(\frac{1}{2})\) with \(\lambda= \bigl ({\scriptsize\begin{matrix}{}\frac{3}{4}&\frac{3}{4}\cr\frac{3}{4}&\frac{3}{4}\end{matrix}} \bigr ) \) is not open because open balls with center 4 are not contained in \(B_{\lambda}(\frac{1}{2})\).
-
(ii)
The limit of a sequence in RCbMS-BA is not unique. For instance \(\{\frac{1}{n}\}\) converges to 2 and 3.
-
(iii)
Every convergent sequence in RCbMS-BA need not be Cauchy. For \(d(\frac{1}{n},\frac{1}{n+p})= \bigl ({\scriptsize\begin{matrix}{}2&2\cr3&3\end{matrix}} \bigr ) \nrightarrow\theta\) as \(n\rightarrow\infty\), so \(\{\frac {1}{n}\}\) is not a Cauchy sequence.
-
(iv)
A RCbMS-BA need not be Hausdorff, as it is impossible to find \(r_{1}, r_{2} \succ0\) such that \(B_{r_{1}}(4)\cap B_{r_{2}}(5) = \phi\).
Theorem 3.5
Let \((\chi,d_{rcb})\) be a complete RCbMS-BA over \(\mathcal{A}\) with \(\theta\preceq s\) and \(T:\chi\rightarrow\chi\). If there exist \(\lambda\in P\), \(r(\lambda)< 1\) such that
for all \(x,y\in\chi\), then T has a unique fixed point.
Proof
Let \(x_{0}\in\chi\) be arbitrary. Consider the iterative sequence defined by \(x_{n+1}=Tx_{n}\) for all \(n\geq0\). We divide the proof into three cases.
Case 1: Let \(r(\lambda)\in[0,\frac{1}{s})\) (\(s>1\)). If \(x_{n}=x_{n+1}\) then \(x_{n}\) is fixed point of T. Moreover, for any \(x\in X\) the iterative sequence \(\{T^{n}x\}\) (\(n\in\mathbb{N}\)) converges to the fixed point. So, suppose that \(x_{n}\neq x_{n+1}\) for all \(n\geq0\). Setting \(d_{rcb}(x_{n},x_{n+1})=d_{n}\), it follows from (3.1) that
i.e. the sequence \(\{d_{n}\}\) is strictly decreasing and from this it follows that \(d_{n} \neq d_{m}\) whenever \(n \neq m\). Continuing this process we get
Again setting \(d^{*}_{n}=d_{rcb}(x_{n},x_{n+2})\) for any \(n\in\mathbb {N}\), using (3.1) we get
Repeating this process we obtain
Since \(r(\lambda)<\frac{1}{s}\), we have \(r(s\lambda^{2})\le sr(\lambda ^{2})\le sr(\lambda).r(\lambda) < \frac{1}{s} < 1\) and so \(e-s\lambda ^{2}\) is invertible and
We consider \(d(x_{n},x_{n+p})\) in two cases.
If p is odd, say \(2m+1\), then using (3.2) as well as the fact that \(d_{n} \neq d_{m}\) whenever \(n \neq m\) we obtain
Since \(r(\lambda)< \frac{1}{s}<1\), using Lemma 2.7 of [6], it is easy to see that \(\lambda^{n}\) is a c-sequence. Again using Proposition 2.2 of [5], \(\lambda^{n}(e-(s\lambda ^{2}))^{-1}sd_{0}[1+\lambda]\rightarrow\theta\) as \(n\rightarrow\infty \), and so it follows that, for any \(c\in\mathcal{A}\) with \(\theta\ll c\), there exists a natural number \(N_{1}\) such that, for any \(n>N_{1}\), we have
If p is even say 2m, using (3.2) and (3.3) as well as the fact that \(d_{n} \neq d_{m}\) whenever \(n \neq m\) we obtain
Note that \(r(\lambda)< \frac{1}{s}<1\) and so using Lemma 2.7 of [6], it is easy to see that \(\lambda ^{n}\) is a c-sequence. Again using Proposition 2.2 of [5], \((e-(s\lambda^{2}))^{-1}sd_{0}[e+\lambda ]\lambda^{n}+(\frac{e}{s}-\lambda)^{-1}d^{*}_{0}\lambda^{n}\rightarrow \theta\) as \(n\rightarrow\infty\) and so it follows that, for any \(c\in\mathcal{A}\) with \(\theta\ll c\), there exists a natural number \(N_{2}\) such that, for any \(n>N_{2}\), we have
Let \(N_{0} = \operatorname{Max}\{N_{1}, N_{2}\}\). Then for all \(n \ge N_{0}\) we have
Thus \(\{x_{n}\}\) is a Cauchy sequence and since \((\chi,d_{rcb})\) is complete, we can find \(u\in\chi\) such that
Since \(d_{n} \neq d_{m}\) whenever \(n \neq m\) there exists \(k\in\mathbb {N}\) such that \(d_{rcb}(u,Tu) \neq\{d_{k}, d_{k+1},\ldots \}\). Then for any \(n > k\)
i.e. \(Tu=u\). Now if \(Tv=v\) and \(d_{rcb}(u,v)\neq\theta\) then using (3.1) one can easily deduce that \(d_{rcb}(u,v)=0\), and so the fixed point is unique.
Case 2: Let \(r(\lambda)\in[\frac{1}{s},1)\) (\(s>1\)). In this case, we have \(r(\lambda)^{n}\rightarrow0\) as \(n\rightarrow \infty\), and so there exists \(n_{0}\in N\) such that \(r(\lambda )^{n_{0}}<\frac{1}{s}\). Note that \(r(\lambda^{n_{0}}) \le r(\lambda)^{n_{0}}<\frac{1}{s}\). Also by (3.1),
Thus by case 1, \(T^{n_{0}}\) has a unique fixed point \(u^{*}\in X\). Now we have
i.e. \(Tu^{*}\) is also a fixed point of \(T^{n_{0}}\). Hence, by the uniqueness of the fixed point of \(T^{n_{0}}\) we get \(Tu^{*}= u^{*}\). Now suppose \(Tu=u\) and \(Tv=v\). Then \(T^{n_{0}}u=T^{n_{0}-1}(Tu)=T^{n_{0}-1}u=\cdots=Tu=u\) and \(T^{n_{0}}v=T^{n_{0}-1}(Tv)=T^{n_{0}-1}v=\cdots=Tv=v\). By the uniqueness of the fixed point of \(T^{n_{0}}\) we get \(u=v\).
Case 3: \(s=1\). The proof follows from case 1. □
Remark 3.6
In an open problem in [7] the authors have asked whether it is possible to increase the range of λ in Theorem 2.1 of [7] from \((0,{1\over s})\) to \((0,1)\). Since every rectangular b-metric space is a RCbMS-BA, Theorem 3.5 gives a positive answer to the question posed by the authors.
Definition 3.7
Let \((\chi,d_{rcb})\) be a RCbMS-BA, \(\theta\preceq s\) and \(T:\chi\rightarrow\chi\). Then T is called a weak Kannan contraction iff there exist \(L,\lambda\in P\) such that \(0\le r(\lambda )< \frac{1}{s+1}\), and
and \(\alpha(u,v) = d_{rcb}(u,Tv)\) or \(d_{rcb}(v,Tu)\).
Theorem 3.8
Let \((\chi,d_{rcb})\) be a complete RCbMS-BA with \(\theta\preceq s\), and \(T:\chi\rightarrow\chi\) be a mapping. If T is a weak Kannan contraction mapping then T has a fixed point. Further if
for some \(L^{*}\in P\), then the fixed point is unique.
Proof
Let \(x_{0}\in\chi\) be arbitrary. Consider the iterative sequence defined by \(x_{n+1}=Tx_{n}\) for all \(n\geq0\). Let \(d_{rcb}(x_{n},x_{n+1})=d_{n}\) and suppose \(\alpha(x,y) = d_{rcb}(x,Ty)\). It follows from (3.10) that
If \(\alpha(x,y) = d_{rcb}(x,Ty)\)
Thus in both cases
where \(\beta=(e-\lambda)^{-1}\lambda\). Repeating this process we obtain
Also, for \(\alpha(x,y) = d_{rcb}(x,Ty)\)
for \(\alpha(x,y) = d_{rcb}(y,Tx)\)
Thus we have
where \(\eta=(\lambda(e+\beta^{2}) + L\beta)d_{0} \in P\). Thus we have
Note that \(r(\lambda)< 1\) and so \((e-\lambda)^{-1}\) is invertible and \((e-\lambda)^{-1}= \sum_{i=0}^{\infty}\lambda^{i}\). Therefore \(r(\beta )=r((e-\lambda)^{-1}\lambda) = (\sum_{i=1}^{\infty}\lambda^{i}) \le \sum_{i=1}^{\infty}r(\lambda)^{i} = \frac{r(\lambda)}{1-r(\lambda)}\) (as \(r(\lambda)< 1\)). Thus we have \(r(\beta)< \frac{1}{s}\). Therefore
so \(e-s\beta^{2}\) is invertible and
We will analyze \(d_{rcb}(x_{n},x_{n+p})\) as follows: For some odd p say \(2m+1\)
Note that \(r(\beta)< \frac{1}{s}<1\) and using Lemma 2.7 of [6], \(\beta^{n}\) is a c-sequence. Again using Proposition 2.2 of [5], \((e-(s\beta^{2}))^{-1}s\beta ^{n}d_{0}+(e-(s\beta^{2}))^{-1}s\beta^{n+1}d_{0} \rightarrow\theta\) as \(n\rightarrow\infty\). It follows that, for any \(c\in A\) with \(\theta\ll c\), there exists \(N_{1}\in\mathbb{N}\) such that, for any \(n>N_{1}\), we have
For some even p, say 2m,
Note that \(r(\beta)< \frac{1}{s}<1\) and using Lemma 2.7 of [6], \(\beta^{n-1}\) is a c-sequence. Again using Proposition 2.2 of [5] \((e-(s\beta^{2}))^{-1}s\beta\beta ^{n-1}d_{0}+(e-(s\beta^{2}))^{-1}s\beta^{2}\beta^{n-1}d_{0}+\eta(\frac {e}{s}-\beta)^{-1}\beta^{n-1}d_{0} \rightarrow\theta\) as \(n\rightarrow\infty\). It follows that, for any \(c\in A\) with \(\theta \ll c\), there exists \(N_{2} \in\mathbb{N}\) such that, for any \(n>N_{2}\),
Let \(N_{0} = \operatorname{Max}\{N_{1}, N_{2}\}\). Then for all \(n \ge N_{0}\) we have
Thus \(\{x_{n}\}\) is a Cauchy sequence and by completeness of \((\chi ,d_{rcb})\) there exists \(u\in\chi\) such that
Since \(d_{n} \neq d_{m}\) whenever \(n \neq m\) there exists \(k\in\mathbb {N}\) such that \(d(u,Tu) \neq\{d_{k}, d_{k+1}, \ldots \}\). Then for any \(n > k\)
Note that \(r(s\lambda) \le sr(\lambda) < \frac{1}{3} < 1\) and so \(e-s\lambda\) is invertible. Also, \(r(\beta)< \frac{1}{s}<1\). Hence using Lemma 2.7 of [6], \(\beta^{n}\) is a c-sequence and use of Proposition 2.2 of [5] gives \(s(e-\lambda s)^{-1}[d_{rcb}(u,x_{n})+(e+\lambda)\beta^{n}d_{0}] + L.d_{rnb}(u,x_{n+1})\rightarrow\theta\) as \(n\rightarrow\infty\). It follows that, for \(c\in A\) and \(\theta\ll c\), there exists \(N_{3} \in \mathbb{N}\), such that, for any \(n>N_{3}\),
i.e. \(Tu=u\). Uniqueness follows easily from (3.11). □
Theorem 3.9
Let \((\chi,d_{rcb})\) be a complete RCbMS-BA with \(s\geq1\) and \(T:\chi\rightarrow\chi\) be a mapping. If there exists \(\lambda\in P\) such that \(0\le r(\lambda)< \frac {1}{s+1}\), and
for all \(x,y\in\chi\) then T has a unique fixed point.
Proof
Note that (3.20) implies (3.10) and (3.11). Hence the result follows from Theorem 3.8. □
Corollary 3.10
Theorem 3.2 of [5] and Theorem 2.2 of [1].
Proof
Note that, for \(k\in P\) with \(r(k) < {1\over 2}\),
implies
where \(r(k) < {1\over 2}\) and \(r(2k) < 1\). Thus T satisfies conditions (3.10) and (3.11) of Theorem 3.8, with \(s=1\). Since every CMS-BA is a RCbMS-BA with \(s=1\), the proof follows from Theorem 3.8. □
Corollary 3.11
Theorem 3.3 of [5] and Theorem 2.3 of [1].
Proof
Since every CMS-BA is a RCbMS-BA with \(s=1\), the proof follows from Theorem 3.9. □
Example 3.12
Let \(\mathcal{A} = \{a = (a_{i,j})_{2\times2} : a_{i,j}\in\mathbb {R}, 1\le i,j \le2\}\), \(\|a\| = \max_{i}\sum_{j=1}^{2}|a_{i,j}|\), \(P = \{ a\in\mathcal{A} : a_{i,j}\ge0, 1\le i,j\le2\}\) be a cone in \(\mathcal{A}\). Let χ = \(A \cup B\), where \(A = [0,\frac {1}{2}]\) and \(B = [1,2]\). Let \(d_{rcb}:\chi\times\chi \rightarrow\mathcal{A}\) be given by
Then \((\chi,d_{rcb})\) is a RCbMS-BA over \(\mathcal{A}\) with \(s= \bigl ({\scriptsize\begin{matrix}{}2&0\cr0&2\end{matrix}} \bigr ) \). However, for \(u={1\over n}\) and \(v={1\over m}\) it is impossible to find \(s\in{P}\), \(e\preceq s\) such that \(d_{rcb}({1\over n}, {1\over m}) \preceq s(d_{rcb}({1\over n}, 2) + d_{rcb}(2, {1\over m}))\) for all \({n, m \in\mathbb{N}}\), and so \((\chi,d_{rcb})\) is not a CbMS-BA over \(\mathcal{A}\). Also \((\chi,d_{rcb})\) is not a CMS-BA over \(\mathcal{A}\) as \(d_{rcb}({1\over 3},{1\over 4}) = \bigl ({\scriptsize\begin{matrix}{}0.6&0.6\cr0.6&0.6\end{matrix}} \bigr ) \succ d_{rcb}({1\over 3},{1\over 5})+d({1\over 5},{1\over 4}) = \bigl ({\scriptsize\begin{matrix}{}0.5&0.5\cr0.5&0.5\end{matrix}} \bigr ) \). Define T by
Then T satisfies condition (3.10) For \(\alpha(x,y) \neq\theta \) then it is enough if we take L sufficiently large. If \(\alpha(u,v) = \theta\), we proceed as follows.
Case (i): \(u \in B\cup\{{1\over 6}\}\), \(v\in D\), \(d_{rcb}(u,Tv)=d_{rcb}(u,{1\over 2}-v)\); \(d_{rcb}(v,Tu)=d_{rcb}(v,{9\over 20})\); \(\alpha(u,v)=\theta\) iff \(u+v={1\over 2}\) or \(v={9\over 20}\). Since \(v\in D \), \(v={9\over 20}\). \(u+v={1\over 2}\) only at \(u={1\over 6}\) and \(v={1\over 3}\). Then \(d_{rcb}(Tu,Tv)=d_{rcb}({9\over 20},{1\over 6})= \bigl ({\scriptsize\begin{matrix}{}0.080278&0.080278\cr0.080278&0.080278\end{matrix}} \bigr ) \); \(d_{rcb}(u,Tu)=d_{rcb}({1\over 6},{9\over 20})= \bigl ({\scriptsize\begin{matrix}{}0.080278&0.080278\cr0.080278&0.080278\end{matrix}} \bigr ) \); \(d_{rcb}(v,Tv)=d_{rcb}({1\over 3},{1\over 6})= \bigl ({\scriptsize\begin{matrix}{}0.5&0.5\cr0.5&0.5\end{matrix}} \bigr ) \). Clearly we can find \(\lambda= \bigl ({\scriptsize\begin{matrix}{}k&0\cr0&k\end{matrix}} \bigr ) \) with \(k\in(0,{1\over 3})\) satisfying (3.10).
Case (ii): \(u \in B\cup\{{1\over 6}\}\), \(v\in A-\{D\cup{1\over 6}\}\), \(d_{rcb}(u,Tv)=d_{rcb}(u,{1\over 4})\); \(d_{rcb}(v,Tu)=d_{rcb}(v,{9\over 20})\); \(\alpha(u,v)=0\) only at \(u={1\over 4}\) or \(v={9\over 20}\). But \(u\neq {1\over 4}\). Let \(v={9\over 20}\) and \(u \in B\cup\{{1\over 6}\}\). Then \(d_{rcb}(Tu,Tv)=d_{rcb}({9\over 20},{1\over 4})= \bigl ({\scriptsize\begin{matrix}{}0.04&0.04\cr0.04&0.04\end{matrix}} \bigr ) \); \(d_{rcb}(v,Tv)=d_{rcb}({9\over 20},{1\over 4})= \bigl ({\scriptsize\begin{matrix}{}0.04&0.04\cr0.04&0.04\end{matrix}} \bigr ) \); \(d_{rcb}(u,Tu)=d_{rcb}(x,{9\over 20})= \bigl ({\scriptsize\begin{matrix}{}\vert x-{9\over 20}\vert^{2}&\vert x-{9\over 20}\vert^{2}\cr\vert x-{9\over 20}\vert^{2}&\vert x-{9\over 20}\vert^{2}\end{matrix}} \bigr ) \); when \(u={1\over 6}\), \(d_{rcb}(u,Tu)= \bigl ({\scriptsize\begin{matrix}{}0.0802777&0.0802777\cr0.0802777&0.0802777\end{matrix}} \bigr ) \). Clearly there exist \(k\in(0,{1\over 3})\) such that \(\lambda= \bigl ({\scriptsize\begin{matrix}{}k&0\cr0&k\end{matrix}} \bigr ) \) satisfying (3.10).
Case (iii): \(u\in D \), \(v \in A-\{D\cup{1\over 6}\}\), \(d_{rcb}(u,Tv)=d_{rcb}(u,{1\over 4})\); \(d_{rcb}(v,Tu)=d_{rcb}(v,{1\over 2}-u)\); \(\alpha(u,v)=0\) at \(u={1\over 4}\) and \(u+v={1\over 2}\). At \(u={1\over 4}\), \(d_{rcb}(Tu,Tv)=({1\over 4},{1\over 4})= 0\). Hence condition (3.10) is satisfied. At \(u={1\over n}\) and \(v={1\over 2}-{1\over n}\), \(d_{rcb}(Tu,Tv)=d_{rcb}({1\over 2}-{1\over n},{1\over 4})= \bigl ({\scriptsize\begin{matrix}{}\vert{1\over 4}-{1\over n}\vert^{2}&\vert{1\over 4}-{1\over n}\vert^{2}\cr\vert{1\over 4}-{1\over n}\vert^{2}&\vert{1\over 4}-{1\over n}\vert^{2}\end{matrix}} \bigr ) \); \(d_{rcb}(u,Tu)=d_{rcb}({1\over n},{1\over 2}-{1\over n})= \bigl ({\scriptsize\begin{matrix}{}\vert{2\over n}-{1\over 2}\vert^{2}&\vert{2\over n}-{1\over 2}\vert^{2}\cr\vert{2\over n}-{1\over 2}\vert^{2}&\vert{2\over n}-{1\over 2}\vert^{2}\end{matrix}} \bigr ) \); \(d_{rcb}(v,Tv)=d_{rcb}({1\over 2}-{1\over n},{1\over 4})= \bigl ({\scriptsize\begin{matrix}{}\vert{1\over 4}-{1\over n}\vert^{2}&\vert{1\over 4}-{1\over n}\vert^{2}\cr\vert{1\over 4}-{1\over n}\vert^{2}&\vert{1\over 4}-{1\over n}\vert^{2}\end{matrix}} \bigr ) \); Note that \(d_{rcb}(u,Tu)+d_{rcb}(v,Tv) = \vert{2\over n}-{1\over 2}\vert^{2} + \vert{1\over 4}-{1\over n}\vert^{2} = 5\vert{1\over 4}-{1\over n}\vert^{2} = 5d_{rcb}(Tu,Tv)\). Hence (3.10) is satisfied with \(\lambda= \bigl ({\scriptsize\begin{matrix}{}{1\over 4}&0\cr0&{1\over 4}\end{matrix}} \bigr ) \).
Other cases follow similarly. Indeed condition (3.10) is satisfied. Note that \(d_{rcb}(u,Tu) + d_{rcb}(v,Tv) \neq\theta\) for any \(u,v\in\chi\) and so T satisfies (3.11) for sufficiently large \(L^{*}\). Theorem 3.8 is thus applicable and \(\operatorname{Fix}(T) = \{{1\over 4}\}\). However, condition (3.20) is not satisfied at \(u = {1\over 6}\) and \(v = {1\over 4}\) as \(d_{rcb}(Tu,Tv) = d_{rcb}({9\over 20},{1\over 4}) = \bigl ({\scriptsize\begin{matrix}{}0.04&0.04\cr0.04&0.04\end{matrix}} \bigr ) \succ{1\over 3}[d_{rcb}(u,Tu) + d_{rcb}(v,Tv)]={1\over 3}[d_{rcb}({1\over 6},{9\over 20})+d_{rcb}({1\over 4},{1\over 4})]= \bigl ({\scriptsize\begin{matrix}{}0.02676&0.02676\cr0.02676&0.02676\end{matrix}} \bigr ) \). Hence Theorem 3.9 is not applicable.
Example 3.13
Let \(\chi=[0,{1\over 2}]\) and \(d_{rcb}(x,y)=|x-y|\). Let \(Tx = x^{2}\) for all \(x,y\in\chi\). Then Theorem 3.8 is applicable on T and \(\operatorname{Fix}(T) = \{0\}\). However, Corollary 3.11 is not applicable on T. If we take \(X=[0,1]\) then T satisfies (3.10) but neither \(L<1\) nor T satisfy (3.11). 0 and 1 are two fixed points of T.
Now, we will apply Theorem 3.5 to study the existence and uniqueness of solutions of a system of linear equations.
Consider the following system of linear equations:
with \(a_{ij}, b_{i}\ (i = 1 \cdots n, j=1\cdots n)\ \in\mathbb{C}\).
Theorem 3.14
If \(\sum_{i=1, i\neq j}^{n}|a_{ij}| + |1-a_{jj}| < 1\), then (3.21) has a unique solution.
Proof
Consider the Banach algebra \(\mathcal{A} = \{a = (a_{ij})_{n\times n} : a_{ij}\in\mathbb{C}, 1\le i,j \le n\}\), with e being the identity matrix of order n, multiplication defined as ordinary matrix multiplication and \(\|a\| = \sum_{i=1}^{n} |a_{ij}|\). Let \(P = \{a\in\mathcal{A} : a_{i,j}\ge0, 1\le i,j\le2\}\) be a cone in \(\mathcal{A}\). Let \(\chi= \mathbb{C^{n}}\). Define \(d_{rcb}: \chi\times\chi\rightarrow\mathcal{A}\) by
Then \((\chi,d_{rcb})\) is a RCbMS-BA over \(\mathcal{A}\) with \(s=10\). Let \(T : \chi\rightarrow X\) be defined by
where \(A_{n\times n}\), \(\chi_{{\it s}_{n\times1}}\) and \(B_{n\times1}\) are the coefficient matrices of (3.21).
Then the system of linear equation (3.21) is equivalent to \(x = Tx\). We will show that T satisfies (3.1). Let \(x,y \in\chi\).
Case 1. \(x-y \in[{-1\over 2},{1\over 2}]\times[{-1\over 2},{1\over 2}]\times \cdots \times[{-1\over 2},{1\over 2}]\) and α is the largest integer such that \(\max_{i}\{|x_{i}-y_{i}| : i = 1,2,\ldots, n\} < {1\over \alpha }\), \(\alpha\in\{2,3,4,5,6,7,8,9,10\} \). Then \(Tx = (\gamma_{1},\gamma_{2}, \ldots , \gamma_{n})\); \(\gamma_{i} = \sum_{j=1, j \neq i}^{n}a_{ij}x_{j}+(1-a_{ii})x_{i}\), \(Ty = (\eta_{1},\eta_{2}, \ldots , \eta_{n})\); \(\eta_{i} = \sum_{j=1, j \neq i}^{n}a_{ij}x_{j}+(1-a_{ii})x_{i}\) and \(Tx-Ty = (\lambda_{1},\lambda_{2}, \ldots , \lambda_{n})\) where \(\lambda_{i} = \sum_{j=1, j \neq i}^{n}a_{ij}(x_{j}-y_{j})+(1-a_{ii})(x_{i}-y_{i})\) and \(|\lambda_{i}| = \gamma_{i}-\eta_{i} = \sum_{j=1, j \neq i}^{n}|a_{ij}||x_{j}-y_{j}|+|1-a_{ii}||x_{i}-y_{i}| < {1\over \beta}\), \(\beta\ge \alpha\). Thus we have
Case 2. \(x-y \notin[{-1\over 2},{1\over 2}]\times[{-1\over 2},{1\over 2}]\times \cdots \times[{-1\over 2},{1\over 2}]\). Then we have
Thus in both cases we have \(d(Tx, Ty) \le\gamma.d(x,y)\), where
and \(r(\gamma) \le\|\gamma\| = \sum_{i=1, i\neq j}^{n}|a_{ij}| + |1-a_{jj}| < 1\). Thus T satisfies (3.1) and so by Theorem 3.5 the system of linear equations (3.21) has a unique solution. □
Theorem 3.15
If \(\sum_{j=1, j\neq i}^{n}|a_{ij}| + |1-a_{ii}| < 1\), then the conclusion of Theorem 3.14 still holds.
Proof
Let \(\mathcal{A} \) and P be as in the proof of Theorem 3.14 and \(\|a\| = \sum_{j=1}^{n} |a_{ij}|\). Let \(\chi= \mathbb {C^{n}}\). Let \(d_{rcb}:\chi\times\chi\rightarrow\mathcal{A}\) be given by
Then \((\chi,d_{rcb})\) is a RCbMS-BA over \(\mathcal{A}\) with \(s=1\). Define the self map T of χ by
where \(A_{n\times n}\), \(X_{n\times1}\) and \(B_{n\times1}\) are the coefficient matrices of (3.21).
Then the system of linear equations (3.13) is the problem \(x = Tx\). We will show that T satisfies (3.1). Let \(x,y \in\chi\). Then
with \(\gamma= I - A\) and \(r(\gamma) \le\|\gamma\| = \sum_{i=1, i\neq j}^{n}|a_{ij}| + |1-a_{jj}| < 1\). Thus T satisfies (3.1) and so by Theorem 3.5 the system of linear equations (3.21) has a unique solution. □
References
Liu, H, Xu, S: Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings. Fixed Point Theory Appl. 2013, Article ID 320 (2013)
Huang, HP, Radenović, S: Some fixed point results of generalised Lipschitz mappings on cone b-metric spaces over Banach algebras. J. Comput. Anal. Appl. 20, 566-583 (2016)
Huang, HP, Radenović, S, Deng, G: A sharp generalisation on cone b-metric space over Banach algebra. J. Nonlinear Sci. Appl. 10, 429-435 (2017)
Rudin, W: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)
Xu, S, Radenović, S: Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality. Fixed Point Theory Appl. 2014, Article ID 102 (2014)
Huang, HP, Radenović, S: Common fixed point theorems of generalised Lipschitz mappings in cone b-metric space and applications. J. Nonlinear Sci. Appl. 8, 787-799 (2015)
George, R, Radenovic, S, Reshma, KP, Shukla, S: Rectangular b-metric spaces and contraction principle. J. Nonlinear Sci. Appl. 8, 1005-1013 (2015)
Acknowledgements
This project is supported by Deanship of Scientific research at Prince Sattam bin Abdulaziz University, Al kharj, Kingdom of Saudi Arabia, under International Project Grant No. 2016/01/6714. The authors are thankful to the learned reviewers for their valuable suggestions which helped in bringing this paper in its present form.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
George, R., Nabwey, H.A., Rajagopalan, R. et al. Rectangular cone b-metric spaces over Banach algebra and contraction principle. Fixed Point Theory Appl 2017, 14 (2017). https://doi.org/10.1186/s13663-017-0608-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13663-017-0608-x
MSC
- 47H10
- 54H25
Keywords
- fixed points
- cone rectangular b-metric space
- rectangular metric space
- rectangular b-metric space