- Research
- Open access
- Published:
Fixed-point results for generalized contraction in K-sequentially complete ordered dislocated fuzzy quasimetric spaces
Fixed Point Theory and Algorithms for Sciences and Engineering volume 2022, Article number: 27 (2022)
Abstract
The ambition of this work is to introduce the notion of left (right) K-sequentially complete ordered dislocated fuzzy quasimetric spaces and to define a relevant Hausdorff metric on compact sets. A new approach, given in (Shoaib et al. in Filomat 34(2):323–338, 2020) has been used to obtain fixed-point results for multivalued mappings fulfilling generalized contraction in the latest framework. For the authenticity of our result, an example is formulated.
1 Introduction and preliminaries
One of the branch of functional analysis is fixed-point theory. Fixed-point theory plays a key role to find solutions of mathematical and engineering problems. The fixed-point results for multivalued mappings generalizes the results for single-valued mappings. Applications of the results for multivalued mappings can be seen in Nash equilibria, engineering, and game theory [6, 9, 10, 20, 27, 28, 30]. With the help of multivalued mapping, many results have been proved, for example, see [7, 19, 25, 26, 29, 36–38].
A solution for matrix equations was obtained by a fixed-point result in an ordered metric space that had been proved by Ran and Reurings [24]. In a complete ordered metric space, Altun et al. [3] proved a common fixed point for the mappings satisfying a new restriction of order. For more results in ordered spaces, see [1, 4, 5, 8, 15, 41]. The idea of fuzzy sets was given by Lotfi Zadeh for the first time in 1965 [43]. This concept has been extended in fuzzy functional analysis, fuzzy topology, fuzzy control theory, and decision making, see [18, 22, 23, 31]. One of the significant developments of fuzzy sets in fuzzy functional analysis is fuzzy quasimetric spaces, see [11, 13, 14, 32]. The symmetric condition was not assumed in the fuzzy quasimetric spaces. Arshad et al. [5] observed that there were mappings that had fixed points but there were no results to ensure the existence of a fixed point of such mappings. They introduced a contraction on a closed ball to achieve common fixed points for such mappings. For further results on a closed ball, see [33–37, 40]. Hitzler et al. [16] established a dislocated metric space and obtained some results, see also [17]. Recently, Poovaragavan et al. [21] introduced the concept of right complete dislocated quasi-G-fuzzy metric spaces and gave some results on a closed ball in these spaces. In this paper, we have introduced the concept of ordered dislocated fuzzy quasimetric spaces and dislocated Hausdorff fuzzy quasimetric spaces. We have used a new type of contraction on an intersection of an open ball and a sequence to obtain the common fixed point of multivalued mappings in left(right) K-sequentially complete dislocated fuzzy quasimetric spaces. Our results have extended the results of Altun et al. [3] and Shoaib et al. [39] in many ways. The idea of this manuscript is motived by [39], where an ordered left K-sequentially complete dislocated quasimetric space is replaced by a left K-sequentially complete ordered dislocated fuzzy quasimetric space. Theorem 2.1 is analogous to Theorem 2.2 in [39]. We give the following definitions and results that will be helpful to understand the paper.
Definition 1.1
([12])
A binary operation \(\circledast :[0,1]\times {}[ 0,1]\longrightarrow {}[ 0,1]\) is a continuous triangular norm (t-norm) if the following axioms hold: \(\mathcal{T}1\)) \(a\circledast b=b\circledast a\) and \(a\circledast (b\circledast c)=(a\circledast b)\circledast c\); \(\mathcal{T}2\)) ⊛ is continuous; \(\mathcal{T}3\)) \(a\circledast 1=1\) for all \(a\in {}[ 0,1]\); \(\mathcal{T}4\)) \(a\circledast b< c\circledast d\) whenever \(a< c\) and \(b< d\) for all \(a,b,c,d\in {}[ 0,1]\).
Definition 1.2
([42])
Let Ψ be the class of all mappings \(\mu :[0,1]\rightarrow {}[ 0,1]\) such that 1) μ is continuous and nondecreasing; 2) \(\mu (t)>t\) for all \(t\in (0,1)\).
Lemma 1.3
([42])
If \(\mu \in \Psi \), then 1) \(\mu (1)=1\); 2) \(\lim_{k\rightarrow \infty }\mu ^{k}(t)=1\) for all \(t\in (0,1)\).
Definition 1.4
([3])
Let \(\mathcal{Y}\) be a nonempty set. Then, ⪯ is a partial order on \(\mathcal{Y}\) if: (i) \(x\preceq x\) for all \(x\in \mathcal{Y}\); (ii) \(x\preceq y\) and \(y\preceq x\) implies \(x=y\) for all \((x, y)\in \mathcal{Y}\times \mathcal{Y}\); (iii) \(x\preceq y\) and \(y\preceq z\) implies \(x\preceq z\) for all \((x, y, z)\in \mathcal{Y}\times \mathcal{Y}\times \mathcal{Y}\). Let A ≠ϕ and \(A\subseteq \mathcal{Y}\). Then, \(x\preceq A\) iff \(x\preceq a\), for all \(a\in A\) and \(x\succeq A\) iff \(x\succeq a\), for all \(a\in A\).
Definition 1.5
([2])
Let \(\mathcal{Y}\neq \phi \) be an arbitrary set, ⊛ a continuous t-norm, and \(\mathcal{F}_{d_{q}\text{ }}\)a fuzzy set on \(\mathcal{Y}\times \mathcal{Y}\times {}[ 0,\infty )\). The 3-tuple \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) is said to be a dislocated fuzzy quasimetric space, if \(\mathcal{F}_{d_{q}}\) satisfies the following constraints for each \(x,y,z\in X\) and \(u,t>0\):
\(\mathcal{F}1\)) If \(\mathcal{F}_{d_{q}}(x,y,u)=\mathcal{F}_{d_{q}}(y,x,u)=1\), then \(x=y\);
\(\mathcal{F}2\)) \(\mathcal{F}_{d_{q}}(x,y,u)\circledast \mathcal{F}_{d_{q}}(y,z,s)\leq \mathcal{F}_{d_{q}}(x,z,u+s)\).
For \(x_{\circ }\in \mathcal{Y}\), \(u>0\), \(B_{\mathcal{F}_{dq}}(x_{\circ },r,u)=\{y\in \mathcal{Y}:\mathcal{F}_{d_{q}}(x_{ \circ },y,u)>1-r \wedge \mathcal{F}_{d_{q}}(y,x_{\circ },u)>1-r \}\) and \(\overline{B_{\mathcal{F}_{dq}}(x_{\circ },r,u)}=\{y\in \mathcal{Y}:\mathcal{F}_{d_{q}}(x_{ \circ },y,u)\geq 1-r \wedge \mathcal{F}_{d_{q}}(y,x_{\circ },u)\geq 1-r \}\) are open and closed balls, respectively, in \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\).
Example 1.6
Let \(\mathcal{Y}=[0,\infty )\). Then, \(\mathcal{F}_{d_{q}}(x,y,u)=\frac{u}{u+x+2y}\) is a dislocated fuzzy quasimetric with \(a\circledast b=\min \{a,b\}\). Note that \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) is neither a dislocated fuzzy metric space nor a fuzzy quasimetric space.
Definition 1.7
Let X be a nonempty set. Then, \(({X},\preceq ,\mathcal{F}_{d_{q}})\) is called an ordered dislocated fuzzy quasimetric space if: (i) \(\mathcal{F}_{d_{q}}\) is a dislocated fuzzy quasimetric on X and (ii) ⪯ is a partial order on X.
Definition 1.8
Let \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) be a dislocated fuzzy quasimetric space. A sequence \(\{x_{k}\}\) in \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) is said to be
1) dislocated fuzzy quasiconvergent to a point \(x\in \mathcal{Y}\), if \(\lim_{k\rightarrow \infty }\mathcal{F}_{d_{q}}(x_{k},x,u)=1=\lim_{k\rightarrow \infty }\mathcal{F}_{d_{q}}(x,x_{k},u)\) for all \(u>0\) or for any ε >0, there exists \(k_{\circ }\in \mathbb{N} \), such that for all \(k>k_{\circ }\), \(\mathcal{F}_{d_{q}}(x_{k},x,u)<\) ε and \(\mathcal{F}_{d_{q}}(x,x_{k},u)<\) ε. In this case x is called a limit of \(\{x_{k}\}\).
2) a left (right) K-Cauchy sequence if for \(k,m\in \) with k> m, \(\lim_{k,m\rightarrow \infty }\mathcal{F}_{d_{q}}(x_{k},x_{m},u)=1\) \((\lim_{k,m\rightarrow \infty }\mathcal{F}_{d_{q}}(x_{m},x_{k},u)=1)\) for all \(u>0\) or for any ε >0, there exists \(k_{\circ }\in \mathbb{N} \), such that for all \(k,m\in \) with k> \(m\geq k_{\circ }\), \(\mathcal{F}_{d_{q}}(x_{k},x_{m},u)<\) ε \((\mathcal{F}_{d_{q}}(x_{m},x_{k},u)<\varepsilon )\) for all \(u>0\).
3) \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) is called left (right) K-sequentially complete if every left (right) K-Cauchy sequence in \(\mathcal{Y}\) converges to a point \(x\in \mathcal{Y}\).
Definition 1.9
Let \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) be a dislocated fuzzy quasimetric space. Then, for each \(a\in \mathcal{Y}\), \(B\subseteq \mathcal{Y}\), and \(u>0\), define \(\mathcal{F}_{d_{q}}(a,B,u)=\sup \{\mathcal{F}_{d_{q}}(a,b,u):b\in B \}\) and \(\mathcal{F}_{d_{q}}(B,a,u)=\sup \{\mathcal{F}_{d_{q}}(b,a,u):b\in B \}\).
For a given fuzzy metric space \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\), \(K_{0}(\mathcal{Y})\) will represent the set of nonempty compact subsets of \((\mathcal{Y},\tau _{\mathcal{F}})\), where \((\mathcal{Y},\tau _{\mathcal{F}})\) is a metrizable topological space, generated by a fuzzy metric space \((\mathcal{Y},\mathcal{F},\circledast )\).
Lemma 1.10
Let \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) be a dislocated fuzzy quasimetric space. Then, for each \(a\in \mathcal{Y}\), \(B\in K_{0}(\mathcal{Y})\) and \(u>0\), there is \(b_{0}\in B\) such that \(\mathcal{F}_{d_{q}}(a,B,u)=\mathcal{F}_{d_{q}}(a,b_{0},u)\) and \(\mathcal{F}_{d_{q}}(B,a,u)=\mathcal{F}_{d_{q}}(b_{0},a,u)\).
Lemma 1.11
Let \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) be a dislocated fuzzy quasimetric space. Then, for each \(A\in K_{0}(\mathcal{Y})\) and for any nonempty subset B of \(\mathcal{Y}\) and \(u>0\), there exists \(a_{0}\in A\) such that \(\inf_{a\in A}\mathcal{F}_{d_{q}}(a,B,u)=\mathcal{F}_{d_{q}}(a_{0},B,u)\) and \(\inf_{a\in A}\mathcal{F}_{d_{q}}(B,a,u)=\mathcal{F}_{d_{q}}(B,a_{0},u)\).
Definition 1.12
Let \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) be a dislocated fuzzy quasimetric space. We define a function \(H_{d_{q}}\) on \(K_{0}(\mathcal{Y})\times K_{0}(\mathcal{Y})\times (0,\infty )\) by
\((K_{0}(\mathcal{Y}),H_{d_{q}},\circledast )\) is known as a dislocated Hausdorff fuzzy quasimetric space on \(K_{0}(\mathcal{Y})\).
Lemma 1.13
Let \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) be a dislocated fuzzy quasimetric space and \((K_{0}(\mathcal{Y}),H_{d_{q}},\circledast )\) be a Hausdorff metric space on \(K_{0}(\mathcal{Y}) \). Then, for arbitrary \(A,B\in K_{0}(\mathcal{Y})\) and for each \(a\in A\), there exists \(b_{a}\in B\) such that \(H_{d_{q}}(A,B,u)\leq \mathcal{F}_{d_{q}}(a,b_{a},u)\) and \(H_{d_{q}}(B,A,u)\leq \mathcal{F}_{d_{q}}(b_{a},a,u) \), where \(\mathcal{F}_{d_{q}}(a,B,u)=\mathcal{F}_{d_{q}}(a,b_{a},u)\) and \(\mathcal{F}_{d_{q}}(B,a,u)=\mathcal{F}_{d_{q}}(b_{a},a,u)\).
2 Main result
Let \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) be a dislocated fuzzy quasimetric space, \(\mathfrak{e}_{\circ }\in \mathcal{Y} \) and \(\mathcal{T}:\mathcal{Y}\rightarrow K_{\circ }(\mathcal{Y})\) be a multivalued mapping on \(\mathcal{Y}\). As \(\mathcal{T}\mathfrak{e}_{\circ }\) is a compact set, there exists \(\mathfrak{e}_{1}\in \mathcal{T}\mathfrak{e}_{\circ }\) such that \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathcal{T}\mathfrak{e}_{\circ },u)=\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ }, \mathfrak{e}_{1},u)\) and \(\mathcal{F}_{d_{q}}(\mathcal{T}\mathfrak{e}_{\circ },\mathfrak{e}_{\circ },u)=\mathcal{F}_{d_{q}}(\mathfrak{e}_{1}, \mathfrak{e}_{\circ },u)\). Now, for \(\mathfrak{e}_{1}\in \mathcal{Y}\), there exists \(\mathfrak{e}_{2}\in \mathcal{T}\mathfrak{e}_{1}\) such that \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathcal{T}\mathfrak{e}_{1},u)=\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{2},u)\) and \(\mathcal{F}_{d_{q}}(\mathcal{T}\mathfrak{e}_{1},\mathfrak{e}_{1},u)=\mathcal{F}_{d_{q}}(\mathfrak{e}_{2},\mathfrak{e}_{1},u)\). Continuing this process, we construct a sequence \(\mathfrak{e}_{k}\) of points in \(\mathcal{Y}\) such that \(\mathfrak{e}_{k+1}\in \mathcal{T}\mathfrak{e}_{k}\), \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{k},\mathcal{T}\mathfrak{e}_{k},u)=\mathcal{F}_{d_{q}}(\mathfrak{e}_{k},\mathfrak{e}_{k+1},u)\) and \(\mathcal{F}_{d_{q}}(\mathcal{T}\mathfrak{e}_{k},\mathfrak{e}_{k},u)=\mathcal{F}_{d_{q}}(\mathfrak{e}_{k+1}, \mathfrak{e}_{k},u)\). We denote this iterative sequence by \(\{\mathcal{YT}(\mathfrak{e}_{k})\}\) and say that \(\{\mathcal{YT}(\mathfrak{e}_{k})\}\) is a sequence in \(\mathcal{Y}\) generated by \(\mathfrak{e}_{\circ }\).
Theorem 2.1
Let \((\mathcal{Y},\preceq ,\mathcal{F}_{d_{q}},\circledast )\) be a left K-sequentially complete ordered dislocated fuzzy quasimetric space with \(a\ast b=\min \{a,b\}\). Let \((K_{0}(\mathcal{Y}),H_{d_{q}},\circledast )\) be a dislocated Hausdorff fuzzy quasimetric space on \(K_{0}(\mathcal{Y})\). Let \(S,\mathcal{T}:\mathcal{Y}\rightarrow K_{\circ }(\mathcal{Y})\) be multivalued mappings. Assume that the following assertions hold: (i) There exist \(\mu \in \Psi \), \(\mathfrak{e}_{\circ }\in \mathcal{Y}\) and \(r>0\) such that for every \(\mathfrak{e},f\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{ \circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k})\}\) with \(\mathfrak{e}\succeq S\mathfrak{e}\), \(f\preceq Sf\), we have
for all \(u>0\), where
(ii) If \(\mathfrak{e}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{ \circ })\),
then (iia) If \(\mathfrak{e}\preceq S\mathfrak{e}\), then \(f\succeq Sf\). (iib) If \(\mathfrak{e}\succeq S\mathfrak{e} \), then \(f\preceq Sf\). (iii) The set \(G(S)=\{\mathfrak{e}:\mathfrak{e}\preceq S\mathfrak{e}\textit{ and } \mathfrak{e}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\}\) is closed and contains \(\mathfrak{e}_{\circ }\). (iv) For \(k\in \cup \{0\}\), we have
Then, the subsequence \(\{\mathfrak{e}_{2k}\}\) of \(\{\mathcal{YT}(\mathfrak{e}_{k})\}\) is a sequence in \(G(S)\) and \(\mathfrak{e}_{2k}\rightarrow \mathfrak{e}^{\divideontimes }\in G(S)\) and \(\mathcal{F}_{d_{q}}(\mathfrak{e}^{\divideontimes },\mathfrak{e}^{\divideontimes },u)=1\). Also, if the inequality (i) holds for \(\mathfrak{e}^{\divideontimes }\), then S and \(\mathcal{T}\) have a common fixed point \(\mathfrak{e}^{\divideontimes }\) in \(B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\).
Proof
Since \(\mathfrak{e}_{\circ }\in G(S)\), \(\mathrm{(iii)}\) implies that \(\mathfrak{e}_{\circ }\preceq S\mathfrak{e}_{\circ }\) and \(\mathfrak{e}_{\circ }\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\). Consider the sequence \(\{\mathcal{YT}(\mathfrak{e}_{k})\}\). Then, there exists \(\mathfrak{e}_{1}\in \mathcal{T}\mathfrak{e}_{\circ }\) such that
Now, \(\mathrm{(iia)}\) implies that \(\mathfrak{e}_{1}\succeq S\mathfrak{e}_{1}\). By using the property of the t-norm and (iv), we have
It follows that \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{1},u_{\circ })>1-r\) and \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{\circ },u_{\circ })>1-r\). Hence, \(\mathfrak{e}_{1}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\). Also,
As \(\mathfrak{e}_{1}\succeq S\mathfrak{e}_{1}\), \(\mathrm{(iib)}\) implies \(\mathfrak{e}_{2}\preceq S\mathfrak{e}_{2}\). By the triangle inequality, we have
By Lemma 1.13, we have
As \(\mathfrak{e}_{\circ }\), \(\mathfrak{e}_{1}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k}) \}\), \(\mathfrak{e}_{1}\succeq S\mathfrak{e}_{1}\) and \(\mathfrak{e}_{\circ }\preceq S\mathfrak{e}_{\circ }\), by (i), we have
If \(\min \{\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{\circ }, \frac{u}{2}),\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{1}, \frac{u}{2}),\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{2},\frac{u}{2}) \}=\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{2},\frac{u}{2})\), then a contradiction arises due to the fact that \(\mu (u)>u\). Hence, we have
Now, by the triangular inequality, we have
By Lemma 1.13, we have
As \(\mathfrak{e}_{\circ }\), \(\mathfrak{e}_{1}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k}) \},\mathfrak{e}_{1}\succeq S\mathfrak{e}_{1}\) and \(\mathfrak{e}_{\circ }\preceq S\mathfrak{e}_{\circ }\), by (i), we have
If \(\min \{\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{\circ }, \frac{u}{2}),\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{2}, \frac{u}{2}),\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{1}, \frac{u}{2})\}=\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{2},\frac{u}{2})\), then by (2.2)
If \(\min \{\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{\circ }, \frac{u}{2}),\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{2}, \frac{u}{2}),\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{1}, \frac{u}{2})\}=\min \{\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{\circ }, \frac{u}{2}),\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{1}, \frac{u}{2})\}\), then in both cases, we have
By inserting (2.5) into (2.4), we have
From (2.3) and (2.6), it follows that \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{2},u_{\circ })>1-r\) and \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{2},\mathfrak{e}_{\circ },u_{\circ })>1-r\). Hence, \(\mathfrak{e}_{2}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\). Also,
As \(\mathfrak{e}_{2}\preceq S\mathfrak{e}_{2}\), by \(\mathrm{(iib),}\) we have \(\mathfrak{e}_{3}\succeq S\mathfrak{e}_{3}\). Let \(\mathfrak{e}_{3},\mathfrak{e}_{4},\ldots,\mathfrak{e}_{s}\in B_{\mathcal{F}_{dq}}( \mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k})\}\), \(\mathfrak{e}_{s}\preceq S\mathfrak{e}_{s}\) and \(\mathfrak{e}_{s-1}\succeq S\mathfrak{e}_{s-1}\) for some \(s\in \mathbb{N} \), where \(s=2p\) and \(p=1,2,3,\ldots,\frac{s}{2}\). By using Lemma 1.13, we have
As \(\mathfrak{e}_{2p-1}\), \(\mathfrak{e}_{2p}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k}) \}\), \(\mathfrak{e}_{2p-1}\succeq S\mathfrak{e}_{2p-1}\) and \(\mathfrak{e}_{2p}\preceq S\mathfrak{e}_{2p}\), by (i), we have
If \(\min \{\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1},\mathfrak{e}_{2p},u),\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p},\mathfrak{e}_{2p+1},u)\}= \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p},\mathfrak{e}_{2p+1},u)\), then a contradiction arises due to the fact that \(\mu (u)>u\). Therefore,
which implies that
Now, by Lemma 1.13, we have
As \(\mathfrak{e}_{2p-1}\), \(\mathfrak{e}_{2p-2}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k}) \},\mathfrak{e}_{2p-1}\succeq S\mathfrak{e}_{2p-1}\) and \(\mathfrak{e}_{2p-2}\preceq S\mathfrak{e}_{2p-2}\), by (i), we have
If \(\min \{\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1},\mathfrak{e}_{2p-2},u),\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1},\mathfrak{e}_{2p},u), \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2},\mathfrak{e}_{2p-1},u)\}=\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1},\mathfrak{e}_{2p},u)\), then a contradiction arises due to the fact that \(\mu (u)>u\), so
Apply μ on both sides. Since μ is a nondecreasing function,
By inserting (2.9) into (2.7), we obtain
Now, by Lemma 1.13, we have
As \(\mathfrak{e}_{2p-3},\mathfrak{e}_{2p-2}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k}) \}\), \(\mathfrak{e}_{2p-3}\succeq S\mathfrak{e}_{2p-3}\) and \(\mathfrak{e}_{2p-2}\preceq S\mathfrak{e}_{2p-2}\), by \(\mathrm{(i)}\), we have
If \(\min \{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-3},\mathfrak{e}_{2p-2},u),\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2},\mathfrak{e}_{2p-1},u) \} =\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2}, \mathfrak{e}_{2p-1},u)\), then a contradiction arises. Therefore,
Now, by Lemma 1.13, we have
As \(\mathfrak{e}_{2p-3},\mathfrak{e}_{2p-2}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k}) \}\), \(\mathfrak{e}_{2p-3}\succeq S\mathfrak{e}_{2p-3}\) and \(\mathfrak{e}_{2p-2}\preceq S\mathfrak{e}_{2p-2}\), by \(\mathrm{(i)}\), we have
By using inequality (2.11), we have
This implies that
Combining inequalities (2.10), (2.12), and (2.13), we have
Following the patterns of inequalities (2.8), (2.10), and (2.14), we have
Now, by Lemma 1.13, we have
As \(\mathfrak{e}_{2p-1}\), \(\mathfrak{e}_{2p}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k}) \},\mathfrak{e}_{2p-1}\succeq S\mathfrak{e}_{2p-1}\) and \(\mathfrak{e}_{2p}\preceq S\mathfrak{e}_{2p}\), by (i), we have
Using (2.7), we have
which implies that
By (2.9) and (2.16), we obtain
Combining (2.12), (2.13), and (2.18), we have
Continuing in this way, we obtain
If \(s=2p+1\), \(p=1,2,\ldots,\frac{s-1}{2}\), \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p+1},\mathcal{T}\mathfrak{e}_{2p+1},u)=\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p+1},\mathfrak{e}_{2p+2},u)\) and \(\mathcal{F}_{d_{q}}(\mathcal{T}\mathfrak{e}_{2p+1},\mathfrak{e}_{2p+1},u)=\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p+2},\mathfrak{e}_{2p+1},u)\). By using the same procedure as above, we have
and
By combining (2.15) and (2.20), we have
and by combining (2.19) and (2.21), we obtain
By using the triangular inequality, \(\mathrm{(iv)}\) and (2.22), we have
Hence, by \(\mathrm{(iv)}\), we have
Similarly, by the triangular inequality, \(\mathrm{(iv)}\) and (2.23), we have
From (2.24) and (2.25), \(\mathfrak{e}_{s+1}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\). Hence, by mathematical induction, we have \(\mathfrak{e}_{k}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{ \circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k})\}\), \(\mathfrak{e}_{2k}\preceq S\mathfrak{e}_{2k}\) and \(\mathfrak{e}_{2k+1}\succeq S\mathfrak{e}_{2k+1}\) for all k∈. Also, from (iii) \(\mathfrak{e}_{2k}\in G(S)\). Now, inequalities (2.22) and (2.23) will be held for all s∈. Now, for \(k,m\in \) with \(k< m\), we have
By Lemma 1.3,
and
Hence, \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{k},\mathfrak{e}_{k+m},u) \rightarrow 1\) as \(k\rightarrow \infty \). Thus, we proved that \(\{\mathcal{YT}(\mathfrak{e}_{k})\}\) is a left K-Cauchy sequence in \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\). As \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) is left K-sequentially complete, so \(\{\mathcal{YT}(\mathfrak{e}_{k})\}\rightarrow \mathfrak{e}^{\divideontimes } \mathfrak{\in \mathcal{Y}}\). As \(\{\mathfrak{e}_{2k}\}\) is a subsequence of \(\{\mathcal{YT}(\mathfrak{e}_{k})\}\), so \(\mathfrak{e}_{2k}\rightarrow \mathfrak{e}^{\divideontimes }\mathfrak{.}\) Also, \(\{\mathfrak{e}_{2k}\}\) is a sequence in \(G(S)\) and \(G(S) \) is closed, so \(\mathfrak{e}^{\divideontimes }\in G(S)\) and therefore \(\mathfrak{e}^{\divideontimes }\preceq S\mathfrak{e}^{\divideontimes }\). Also,
Now,
Hence,
Now,
By assumption, inequality (i) holds for \(\mathfrak{e}^{\divideontimes }\), also \(\mathfrak{e}\succeq S\mathfrak{e}_{2k+1}\) and \(\mathfrak{e}^{\divideontimes }\preceq S\mathfrak{e}^{\divideontimes }\). Hence,
Letting \(k\rightarrow \infty \) and by using (2.27), we obtain
By definition of μ, we obtain
By assumption, inequality \(\mathrm{(i)}\) holds for \(\mathfrak{e}^{\divideontimes }\), also \(\mathfrak{e}_{2k+1}\succeq S\mathfrak{e}_{2k+1}\) and \(\mathfrak{e}^{\divideontimes }\preceq S\mathfrak{e}^{\divideontimes }\). Hence,
Letting \(k\rightarrow \infty \), and by using (2.26) and (2.28), we obtain
This implies that \(\mathcal{F}_{d_{q}}(\mathcal{T}\mathfrak{e}^{\divideontimes },\mathfrak{e}^{\divideontimes },u)=1\). Hence, \(\mathfrak{e}^{\divideontimes }\in \mathcal{T}\mathfrak{e}^{\divideontimes }\). Also,
and
Then, from (ii)
From (2.29) and (2.30), we have \(\mathfrak{e}^{\divideontimes }\preceq S\mathfrak{e}^{\divideontimes }\preceq \mathfrak{e}^{\divideontimes }\). This implies
Therefore,
Hence, \(\mathfrak{e}^{\divideontimes }\) is a common fixed point of \(\mathcal{T}\) and S. □
Example 2.2
Let \(\mathcal{Y}=[0,+\infty )\) and let \(\mathcal{F}_{d_{q}}(\mathfrak{e},f,u)=\frac{u}{u+\mathfrak{e}+2f}\) for all \(\mathfrak{e},f,u\in \mathcal{Y}\). Let \(\mathcal{R}\) be the binary relation on \(\mathcal{Y}\) defined by
Consider the partial order on \(\mathcal{Y}\) defined by
Then, \((\mathcal{Y},\preceq ,\mathcal{F}_{d_{q}},\circledast )\) is a left K-sequentially complete ordered dislocated fuzzy quasimetric space with \(a\circledast b=\min \{a,b\}\). Define the pair of mappings \(\mathcal{T},S:\mathcal{Y}\rightarrow \mathcal{Y}\) by
and
Define a nondecreasing mapping \(\mu :[0,1]\rightarrow {}[ 0,1]\) by
Observe that in this case, we have
Let \(\mathfrak{e}_{\circ }=\frac{3}{7}\), \(r=\frac{3}{4}\) and \(u=1\)
Then,
\(G(S)\) contains \(\frac{3}{7}\) and is also a closed set. Now, \(\frac{3}{7\times 25^{k-1}}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ ,}r,u_{ \circ })\), where k∈:
Also, \((\frac{3}{7\times 25^{k-1}},\frac{3}{5\times 7\times 25^{k-1}})\in \mathcal{R}\), so \(\frac{3}{7\times 25^{k-1}}\preceq S(\frac{3}{7\times 25^{k-1}})\). As \((\frac{3}{5\times 35\times 25^{k-1}},\frac{3}{35\times 25^{k-1}}) \in \mathcal{R}\) so \(\frac{3}{35\times 25^{k-1}}\succeq S(\frac{3}{35\times 25^{k-1}})\). Hence, condition (iia) is satisfied. Now \(\frac{3}{35\times 25^{k-1}}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{ \circ ,}r,u_{\circ })\), where k∈.
Also, \((\frac{3}{5\times 35\times 25^{k-1}},\frac{3}{35\times 25^{k-1}}) \in \mathcal{R}\) so \(\frac{3}{35\times 25^{k-1}}\succeq S(\frac{3}{35\times 25^{k-1}})\). As \((\frac{3}{7\times 25^{k}},\frac{3}{5\times 7\times 25^{k}})\in \mathcal{R}\) so \(\frac{3}{7\times 25^{k}}\preceq S(\frac{3}{7\times 25^{k}})\). Hence, condition (iia) is satisfied.
Now, for \(\mathfrak{e},f\notin B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ ,}r,u_{ \circ })\cap \mathcal{YT}(\mathfrak{e}_{k})\). Let \(\mathfrak{e}=5\), \(f=6\) and \(u=\frac{1}{2}\).
Hence, contraction does not hold on the whole space \(\mathcal{Y}\). Now, for \(\mathfrak{e}\), \(f\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ ,}r,u_{\circ })\cap \mathcal{YT}(\mathfrak{e}_{k})\) with \(\mathfrak{e}\succeq S\mathfrak{e}\) and \(f\preceq Sf\), \(\mathfrak{e}\in B\) and \(f\in A\). In general, for some \(k,m\in \).
Case (i): Let \(k\leq m\), \(\mathfrak{e}=\frac{3}{35\times 25^{m-1}}\), \(f=\frac{3}{7\times 25^{k-1}}\) \(u>0\). We have
Now,
Also,
Now, for \(\mathfrak{e}\succeq S\mathfrak{e}\), \(f\preceq Sf\), we have
Case (ii): For \(k>m\), \(\mathfrak{e}=\frac{3}{35\times 25^{m-1}}\), \(f= \frac{3}{7\times 25^{k-1}}\) and \(u>0\). From (2.31), we have
From (2.32)
Also,
Now, from (2.33), we have
Assume that
Then,
Assume that
Then,
Case (iii): For \(\mathfrak{e}=0\), \(f=\frac{3}{7\times 25^{k-1}}\), \(u>0\)
Also,
Now, we simplify the left-hand side of inequality (i).
Also,
Hence,
Case (iv): \(\mathfrak{e}=\frac{3}{35\times 25^{m-1}}\), \(f=0\)
Now, we simplify the left-hand side of inequality (i).
Also,
Hence,
Case (v) The contraction is trivially held for \(\mathfrak{e}=0\) and \(f=0\). Now,
Hence, all the constraints of Theorem 2.1 are satisfied. Hence, S and \(\mathcal{T}\) have a common fixed point and it is 0.
Remark 2.3
By taking six proper subsets of \(D(\mathfrak{e},f,u)\) instead of \(D(\mathfrak{e},f,u)\), we can obtain six new theorems as corollaries of Theorem 2.1.
Remark 2.4
Fixed-point results in right K-sequentially quasimetric spaces can be obtained in a similar way.
Availability of data and materials
No data were used to support this study.
References
Aggarwal, S., Uddin, I., Nieto, J.J.: A fixed-point theorem for monotone nearly asymptotically nonexpansive mappings. J. Fixed Point Theory Appl. 21, Article ID 91 (2019)
Alaca, C.: Fixed point results for mappings satisfying a general contractive condition of operator type in dislocated fuzzy quasi-metric spaces. J. Comput. Anal. Appl. 12(1), 361–368 (2013)
Altun, I., Arifi, N.A., Jleli, M., Lashin, A., Samet, B.: A new approach for the approximations of solutions to a common fixed point problem in metric fixed point theory. J. Funct. Spaces 2016, Article ID 6759320 (2016)
Altun, I., Simsek, H.: Some fixed-point theorems on ordered metric spaces and application. Fixed Point Theory Appl. 2010, Article ID 621469 (2010)
Arshad, M., Shoaib, A., Beg, I.: Fixed point of a pair of contractive dominated mappings on a closed ball in an ordered dislocated metric space. Fixed Point Theory Appl. 2013, Article ID 115 (2013)
Aubin, J.P.: Mathematical Methods of Games and Economic Theory. North-Holland, Amsterdam (1979)
Aydi, H., Bota, M.F., Karapinar, E., Mitrović, S.: Fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, Article ID 88 (2012)
Bhaskar, T.G., Laskhmikantham, V.: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65(7), 1379–1393 (2006)
Bohnenblust, S., Karlin, S.: Contributions to the Theory of Games. Princeton University Press, Princeton (1950)
Carl, S., Heikkila, S.: Fixed Point Theory in Ordered Sets and Applications: From Differential and Integral Equations to Game Theory. Springer, New York (2010)
Castro-Company, F., Romaguera, S., Tirado, P.: The bicompletion of fuzzy quasi-metric spaces. Fuzzy Sets Syst. 166(1), 56–64 (2011)
Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27, 385–389 (1988)
Gregori, V., Morillas, S., Roig, B.: Fuzzy quasi-metrics for the Sorgenfrey line. Fuzzy Sets Syst. 222, 98–107 (2013)
Gregori, V., Romaguera, S.: Fuzzy quasi-metric spaces. Appl. Gen. Topol. 5, 129–136 (2004)
Harjani, J., Sadarangani, K.: Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations. Nonlinear Anal. 72(3), 1188–1197 (2010)
Hitzler, P., Seda, A.K.: Dislocated topologies. J. Electr. Eng. 51(12/s), 3–7 (2000)
Kamal, A., Abd-Elal, A.M.: On fixed-point findings for diverse contractions in b dislocated-multiplicative metric spaces. J. Math. 2021, Article ID 4762281 (2021)
Kramosil, I., Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetica 11, 326–334 (1975)
Laadjel, A., Nieto, J.J., Ouahab, A., Rodríguez-López, R.: Multivalued and random version of Perov fixed point theorem in generalized gauge spaces. Random Oper. Stoch. Equ. 30(1), 1–19 (2022)
Li, J.L.: Several extensions of the Abian-Brown fixed point theorem and their applications to extended and generalized Nash equalibria on chain-complete posets. J. Math. Anal. Appl. 409, 1084–1094 (2014)
Poovaragavan, D., Jeyaraman, M.: Common fixed point theorems in right complete dislocated quasi-G-fuzzy metric spaces. South East Asian J. Math. Math. Sci. 18(1), 235–246 (2022)
Rakić, D., Došenović, T., Mitrović, Z.D., de la Sen, M., Radenović, S.: Some fixed point theorems of Cirić type in fuzzy metric spaces. Mathematics 8(2), 297 (2020). https://doi.org/10.3390/math8020297
Rakić, D., Mukheimer, A., Došenović, T., Mitrovi ć, Z.D., Radenović, S.: On some new fixed point results in fuzzy b-metric spaces. J. Inequal. Appl. 2020, 99 (2020). https://doi.org/10.1186/s13660-020-02371-3
Ran, A.C.M., Reurings, M.C.B.: A fixed point theorem in partially ordered sets and some applications to metrix equations. Proc. Am. Math. Soc. 132(5), 1435–1443 (2004)
Rasham, T., Marino, G., Shoaib, A.: Fixed points for a pair of F-dominated contractive mappings in rectangular b-metric spaces with graph. Mathematics 7(10), 884 (2019). https://doi.org/10.3390/math7100884
Rasham, T., Shoaib, A., Alamri, B.A.S., Arshad, M.: Multivalued fixed point results for new generalized F-dominated contractive mappings on dislocated metric space with application. J. Funct. Spaces 2018, Article ID 4808764 (2018)
Rasham, T., Shoaib, A., Alamri, B.A.S., Arshad, M.: Common fixed point results for two families of multivalued A–dominated contractive mappings on closed ball with applications. Open Math. 17, 1350–1360 (2019)
Rasham, T., Shoaib, A., Hussain, N., Alamri, B.A.S., Arshad, M.: Multivalued fixed point results in dislocated b-metric spaces with application to the system of nonlinear integral equations. Symmetry 11(1), 40 (2019). https://doi.org/10.3390/sym11010040
Rasham, T., Shoaib, A., Hussain, N., Arshad, M., Khan, S.U.: Common fixed point results for new Ciric-type rational multivalued F-contraction with an application. J. Fixed Point Theory Appl. 20(1), 45 (2018)
Rasham, T., Shoaib, A., Marino, G., Alamri, B.A.S., Arshad, M.: Sufficient conditions to solve two systems of integral equations via fixed point results. J. Inequal. Appl. 2019, 182 (2019). https://doi.org/10.1186/s13660-019-2130-7
Rodríguez-López, J., Romaguera, S.: The Hausdorff fuzzy metric on compact sets. Fuzzy Sets Syst. 147, 273–283 (2004)
Rodríguez-López, J., Romaguera, S., Sánchez-Álvarez, J.M.: The Hausdorff fuzzy quasi-metric. Fuzzy Sets Syst. 161(8), 1078–1096 (2010)
Shoaib, A.: α-η dominated mappings and related common fixed point results in closed ball. J. Concr. Appl. Math. 13(1–2), 152–170 (2015)
Shoaib, A., Arshad, M., Kutbi, M.A.: Common fixed points of a pair of Hardy Rogers type mappings on a closed ball in ordered partial metric spaces. J. Comput. Anal. Appl. 17(2), 255–264 (2014)
Shoaib, A., Arshad, M., Rasham, T., Abbas, M.: Unique fixed points results on closed ball for dislocated quasi-G-metric spaces. Trans. A. Razmadze Math. Inst. 117, 221–230 (2017)
Shoaib, A., Azam, A., Arshad, M., Shahzad, A.: Fixed point results for the multivalued mapping on closed ball in dislocated fuzzy metric space. J. Math. Anal. 8(2), 98–106 (2017)
Shoaib, A., Azam, A., Shahzad, A.: Common fixed point results for the family of multivalued mappings satisfying contraction on a sequence in Hausdorff fuzzy metric space. J. Comput. Anal. Appl. 24(4), 692–699 (2018)
Shoaib, A., Hussain, A., Arshad, M., Azam, A.: Fixed point results for \(\alpha _{\ast }\)-ψ-Ciric type multivalued mappings on an intersection of a closed ball and a sequence with graph. J. Math. Anal. 7(3), 41–50 (2016)
Shoaib, A., Khan, I.S., Hassan, Z.: Generalized contraction involving an open ball and common fixed point of multivalued mappings in ordered dislocated quasimetric spaces. Filomat 34(2), 323–338 (2020)
Shoaib, A., Kumam, P., Shahzad, A., Phiangsungnoen, S., Mahmood, Q.: Fixed point results for fuzzy mappings in a b-metric space. Fixed Point Theory Appl. 2018, Article ID 2 (2018)
Shoaib, A., Mustafa, S., Shahzad, A.: Common fixed point of multivalued mappings in ordered dislocated quasi G-metric spaces. Punjab Univ. J. Math. 52(10), 1–23 (2020)
Vetro, C.: Fixed points in a weak non-Archemedean fuzzy metric spaces. Fuzzy Sets Syst. 162, 84–90 (2011)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Acknowledgements
The authors are thankful to the Department of Mathematics and Statistics, Riphah International University, Islamabad, Pakistan for their research support.
Funding
No funds have been taken for this project.
Author information
Authors and Affiliations
Contributions
The first author proposed the idea. The second author wrote the initial draft. The first author corrected and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Abbreviations
Not applicable.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Shoaib, A., Khaliq, K. Fixed-point results for generalized contraction in K-sequentially complete ordered dislocated fuzzy quasimetric spaces. Fixed Point Theory Algorithms Sci Eng 2022, 27 (2022). https://doi.org/10.1186/s13663-022-00737-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13663-022-00737-4