Skip to main content

Fixed-point results for generalized contraction in K-sequentially complete ordered dislocated fuzzy quasimetric spaces

Abstract

The ambition of this work is to introduce the notion of left (right) K-sequentially complete ordered dislocated fuzzy quasimetric spaces and to define a relevant Hausdorff metric on compact sets. A new approach, given in (Shoaib et al. in Filomat 34(2):323–338, 2020) has been used to obtain fixed-point results for multivalued mappings fulfilling generalized contraction in the latest framework. For the authenticity of our result, an example is formulated.

1 Introduction and preliminaries

One of the branch of functional analysis is fixed-point theory. Fixed-point theory plays a key role to find solutions of mathematical and engineering problems. The fixed-point results for multivalued mappings generalizes the results for single-valued mappings. Applications of the results for multivalued mappings can be seen in Nash equilibria, engineering, and game theory [6, 9, 10, 20, 27, 28, 30]. With the help of multivalued mapping, many results have been proved, for example, see [7, 19, 25, 26, 29, 3638].

A solution for matrix equations was obtained by a fixed-point result in an ordered metric space that had been proved by Ran and Reurings [24]. In a complete ordered metric space, Altun et al. [3] proved a common fixed point for the mappings satisfying a new restriction of order. For more results in ordered spaces, see [1, 4, 5, 8, 15, 41]. The idea of fuzzy sets was given by Lotfi Zadeh for the first time in 1965 [43]. This concept has been extended in fuzzy functional analysis, fuzzy topology, fuzzy control theory, and decision making, see [18, 22, 23, 31]. One of the significant developments of fuzzy sets in fuzzy functional analysis is fuzzy quasimetric spaces, see [11, 13, 14, 32]. The symmetric condition was not assumed in the fuzzy quasimetric spaces. Arshad et al. [5] observed that there were mappings that had fixed points but there were no results to ensure the existence of a fixed point of such mappings. They introduced a contraction on a closed ball to achieve common fixed points for such mappings. For further results on a closed ball, see [3337, 40]. Hitzler et al. [16] established a dislocated metric space and obtained some results, see also [17]. Recently, Poovaragavan et al. [21] introduced the concept of right complete dislocated quasi-G-fuzzy metric spaces and gave some results on a closed ball in these spaces. In this paper, we have introduced the concept of ordered dislocated fuzzy quasimetric spaces and dislocated Hausdorff fuzzy quasimetric spaces. We have used a new type of contraction on an intersection of an open ball and a sequence to obtain the common fixed point of multivalued mappings in left(right) K-sequentially complete dislocated fuzzy quasimetric spaces. Our results have extended the results of Altun et al. [3] and Shoaib et al. [39] in many ways. The idea of this manuscript is motived by [39], where an ordered left K-sequentially complete dislocated quasimetric space is replaced by a left K-sequentially complete ordered dislocated fuzzy quasimetric space. Theorem 2.1 is analogous to Theorem 2.2 in [39]. We give the following definitions and results that will be helpful to understand the paper.

Definition 1.1

([12])

A binary operation \(\circledast :[0,1]\times {}[ 0,1]\longrightarrow {}[ 0,1]\) is a continuous triangular norm (t-norm) if the following axioms hold: \(\mathcal{T}1\)) \(a\circledast b=b\circledast a\) and \(a\circledast (b\circledast c)=(a\circledast b)\circledast c\); \(\mathcal{T}2\)) is continuous; \(\mathcal{T}3\)) \(a\circledast 1=1\) for all \(a\in {}[ 0,1]\); \(\mathcal{T}4\)) \(a\circledast b< c\circledast d\) whenever \(a< c\) and \(b< d\) for all \(a,b,c,d\in {}[ 0,1]\).

Definition 1.2

([42])

Let Ψ be the class of all mappings \(\mu :[0,1]\rightarrow {}[ 0,1]\) such that 1) μ is continuous and nondecreasing; 2) \(\mu (t)>t\) for all \(t\in (0,1)\).

Lemma 1.3

([42])

If \(\mu \in \Psi \), then 1) \(\mu (1)=1\); 2) \(\lim_{k\rightarrow \infty }\mu ^{k}(t)=1\) for all \(t\in (0,1)\).

Definition 1.4

([3])

Let \(\mathcal{Y}\) be a nonempty set. Then, is a partial order on \(\mathcal{Y}\) if: (i) \(x\preceq x\) for all \(x\in \mathcal{Y}\); (ii) \(x\preceq y\) and \(y\preceq x\) implies \(x=y\) for all \((x, y)\in \mathcal{Y}\times \mathcal{Y}\); (iii) \(x\preceq y\) and \(y\preceq z\) implies \(x\preceq z\) for all \((x, y, z)\in \mathcal{Y}\times \mathcal{Y}\times \mathcal{Y}\). Let Aϕ and \(A\subseteq \mathcal{Y}\). Then, \(x\preceq A\) iff \(x\preceq a\), for all \(a\in A\) and \(x\succeq A\) iff \(x\succeq a\), for all \(a\in A\).

Definition 1.5

([2])

Let \(\mathcal{Y}\neq \phi \) be an arbitrary set, a continuous t-norm, and \(\mathcal{F}_{d_{q}\text{ }}\)a fuzzy set on \(\mathcal{Y}\times \mathcal{Y}\times {}[ 0,\infty )\). The 3-tuple \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) is said to be a dislocated fuzzy quasimetric space, if \(\mathcal{F}_{d_{q}}\) satisfies the following constraints for each \(x,y,z\in X\) and \(u,t>0\):

\(\mathcal{F}1\)) If \(\mathcal{F}_{d_{q}}(x,y,u)=\mathcal{F}_{d_{q}}(y,x,u)=1\), then \(x=y\);

\(\mathcal{F}2\)) \(\mathcal{F}_{d_{q}}(x,y,u)\circledast \mathcal{F}_{d_{q}}(y,z,s)\leq \mathcal{F}_{d_{q}}(x,z,u+s)\).

For \(x_{\circ }\in \mathcal{Y}\), \(u>0\), \(B_{\mathcal{F}_{dq}}(x_{\circ },r,u)=\{y\in \mathcal{Y}:\mathcal{F}_{d_{q}}(x_{ \circ },y,u)>1-r \wedge \mathcal{F}_{d_{q}}(y,x_{\circ },u)>1-r \}\) and \(\overline{B_{\mathcal{F}_{dq}}(x_{\circ },r,u)}=\{y\in \mathcal{Y}:\mathcal{F}_{d_{q}}(x_{ \circ },y,u)\geq 1-r \wedge \mathcal{F}_{d_{q}}(y,x_{\circ },u)\geq 1-r \}\) are open and closed balls, respectively, in \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\).

Example 1.6

Let \(\mathcal{Y}=[0,\infty )\). Then, \(\mathcal{F}_{d_{q}}(x,y,u)=\frac{u}{u+x+2y}\) is a dislocated fuzzy quasimetric with \(a\circledast b=\min \{a,b\}\). Note that \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) is neither a dislocated fuzzy metric space nor a fuzzy quasimetric space.

Definition 1.7

Let X be a nonempty set. Then, \(({X},\preceq ,\mathcal{F}_{d_{q}})\) is called an ordered dislocated fuzzy quasimetric space if: (i) \(\mathcal{F}_{d_{q}}\) is a dislocated fuzzy quasimetric on X and (ii) is a partial order on X.

Definition 1.8

Let \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) be a dislocated fuzzy quasimetric space. A sequence \(\{x_{k}\}\) in \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) is said to be

1) dislocated fuzzy quasiconvergent to a point \(x\in \mathcal{Y}\), if \(\lim_{k\rightarrow \infty }\mathcal{F}_{d_{q}}(x_{k},x,u)=1=\lim_{k\rightarrow \infty }\mathcal{F}_{d_{q}}(x,x_{k},u)\) for all \(u>0\) or for any ε >0, there exists \(k_{\circ }\in \mathbb{N} \), such that for all \(k>k_{\circ }\), \(\mathcal{F}_{d_{q}}(x_{k},x,u)<\) ε and \(\mathcal{F}_{d_{q}}(x,x_{k},u)<\) ε. In this case x is called a limit of \(\{x_{k}\}\).

2) a left (right) K-Cauchy sequence if for \(k,m\in \) with k> m, \(\lim_{k,m\rightarrow \infty }\mathcal{F}_{d_{q}}(x_{k},x_{m},u)=1\) \((\lim_{k,m\rightarrow \infty }\mathcal{F}_{d_{q}}(x_{m},x_{k},u)=1)\) for all \(u>0\) or for any ε >0, there exists \(k_{\circ }\in \mathbb{N} \), such that for all \(k,m\in \) with k> \(m\geq k_{\circ }\), \(\mathcal{F}_{d_{q}}(x_{k},x_{m},u)<\) ε \((\mathcal{F}_{d_{q}}(x_{m},x_{k},u)<\varepsilon )\) for all \(u>0\).

3) \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) is called left (right) K-sequentially complete if every left (right) K-Cauchy sequence in \(\mathcal{Y}\) converges to a point \(x\in \mathcal{Y}\).

Definition 1.9

Let \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) be a dislocated fuzzy quasimetric space. Then, for each \(a\in \mathcal{Y}\), \(B\subseteq \mathcal{Y}\), and \(u>0\), define \(\mathcal{F}_{d_{q}}(a,B,u)=\sup \{\mathcal{F}_{d_{q}}(a,b,u):b\in B \}\) and \(\mathcal{F}_{d_{q}}(B,a,u)=\sup \{\mathcal{F}_{d_{q}}(b,a,u):b\in B \}\).

For a given fuzzy metric space \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\), \(K_{0}(\mathcal{Y})\) will represent the set of nonempty compact subsets of \((\mathcal{Y},\tau _{\mathcal{F}})\), where \((\mathcal{Y},\tau _{\mathcal{F}})\) is a metrizable topological space, generated by a fuzzy metric space \((\mathcal{Y},\mathcal{F},\circledast )\).

Lemma 1.10

Let \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) be a dislocated fuzzy quasimetric space. Then, for each \(a\in \mathcal{Y}\), \(B\in K_{0}(\mathcal{Y})\) and \(u>0\), there is \(b_{0}\in B\) such that \(\mathcal{F}_{d_{q}}(a,B,u)=\mathcal{F}_{d_{q}}(a,b_{0},u)\) and \(\mathcal{F}_{d_{q}}(B,a,u)=\mathcal{F}_{d_{q}}(b_{0},a,u)\).

Lemma 1.11

Let \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) be a dislocated fuzzy quasimetric space. Then, for each \(A\in K_{0}(\mathcal{Y})\) and for any nonempty subset B of \(\mathcal{Y}\) and \(u>0\), there exists \(a_{0}\in A\) such that \(\inf_{a\in A}\mathcal{F}_{d_{q}}(a,B,u)=\mathcal{F}_{d_{q}}(a_{0},B,u)\) and \(\inf_{a\in A}\mathcal{F}_{d_{q}}(B,a,u)=\mathcal{F}_{d_{q}}(B,a_{0},u)\).

Definition 1.12

Let \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) be a dislocated fuzzy quasimetric space. We define a function \(H_{d_{q}}\) on \(K_{0}(\mathcal{Y})\times K_{0}(\mathcal{Y})\times (0,\infty )\) by

$$ H_{d_{q}}(A,B,u)=\min \Bigl\{ \inf_{a\in A} \mathcal{F}_{d_{q}}(a,B,u),\inf_{b\in B} \mathcal{F}_{d_{q}}(A,b,u)\Bigr\} . $$

\((K_{0}(\mathcal{Y}),H_{d_{q}},\circledast )\) is known as a dislocated Hausdorff fuzzy quasimetric space on \(K_{0}(\mathcal{Y})\).

Lemma 1.13

Let \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) be a dislocated fuzzy quasimetric space and \((K_{0}(\mathcal{Y}),H_{d_{q}},\circledast )\) be a Hausdorff metric space on \(K_{0}(\mathcal{Y}) \). Then, for arbitrary \(A,B\in K_{0}(\mathcal{Y})\) and for each \(a\in A\), there exists \(b_{a}\in B\) such that \(H_{d_{q}}(A,B,u)\leq \mathcal{F}_{d_{q}}(a,b_{a},u)\) and \(H_{d_{q}}(B,A,u)\leq \mathcal{F}_{d_{q}}(b_{a},a,u) \), where \(\mathcal{F}_{d_{q}}(a,B,u)=\mathcal{F}_{d_{q}}(a,b_{a},u)\) and \(\mathcal{F}_{d_{q}}(B,a,u)=\mathcal{F}_{d_{q}}(b_{a},a,u)\).

2 Main result

Let \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) be a dislocated fuzzy quasimetric space, \(\mathfrak{e}_{\circ }\in \mathcal{Y} \) and \(\mathcal{T}:\mathcal{Y}\rightarrow K_{\circ }(\mathcal{Y})\) be a multivalued mapping on \(\mathcal{Y}\). As \(\mathcal{T}\mathfrak{e}_{\circ }\) is a compact set, there exists \(\mathfrak{e}_{1}\in \mathcal{T}\mathfrak{e}_{\circ }\) such that \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathcal{T}\mathfrak{e}_{\circ },u)=\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ }, \mathfrak{e}_{1},u)\) and \(\mathcal{F}_{d_{q}}(\mathcal{T}\mathfrak{e}_{\circ },\mathfrak{e}_{\circ },u)=\mathcal{F}_{d_{q}}(\mathfrak{e}_{1}, \mathfrak{e}_{\circ },u)\). Now, for \(\mathfrak{e}_{1}\in \mathcal{Y}\), there exists \(\mathfrak{e}_{2}\in \mathcal{T}\mathfrak{e}_{1}\) such that \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathcal{T}\mathfrak{e}_{1},u)=\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{2},u)\) and \(\mathcal{F}_{d_{q}}(\mathcal{T}\mathfrak{e}_{1},\mathfrak{e}_{1},u)=\mathcal{F}_{d_{q}}(\mathfrak{e}_{2},\mathfrak{e}_{1},u)\). Continuing this process, we construct a sequence \(\mathfrak{e}_{k}\) of points in \(\mathcal{Y}\) such that \(\mathfrak{e}_{k+1}\in \mathcal{T}\mathfrak{e}_{k}\), \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{k},\mathcal{T}\mathfrak{e}_{k},u)=\mathcal{F}_{d_{q}}(\mathfrak{e}_{k},\mathfrak{e}_{k+1},u)\) and \(\mathcal{F}_{d_{q}}(\mathcal{T}\mathfrak{e}_{k},\mathfrak{e}_{k},u)=\mathcal{F}_{d_{q}}(\mathfrak{e}_{k+1}, \mathfrak{e}_{k},u)\). We denote this iterative sequence by \(\{\mathcal{YT}(\mathfrak{e}_{k})\}\) and say that \(\{\mathcal{YT}(\mathfrak{e}_{k})\}\) is a sequence in \(\mathcal{Y}\) generated by \(\mathfrak{e}_{\circ }\).

Theorem 2.1

Let \((\mathcal{Y},\preceq ,\mathcal{F}_{d_{q}},\circledast )\) be a left K-sequentially complete ordered dislocated fuzzy quasimetric space with \(a\ast b=\min \{a,b\}\). Let \((K_{0}(\mathcal{Y}),H_{d_{q}},\circledast )\) be a dislocated Hausdorff fuzzy quasimetric space on \(K_{0}(\mathcal{Y})\). Let \(S,\mathcal{T}:\mathcal{Y}\rightarrow K_{\circ }(\mathcal{Y})\) be multivalued mappings. Assume that the following assertions hold: (i) There exist \(\mu \in \Psi \), \(\mathfrak{e}_{\circ }\in \mathcal{Y}\) and \(r>0\) such that for every \(\mathfrak{e},f\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{ \circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k})\}\) with \(\mathfrak{e}\succeq S\mathfrak{e}\), \(f\preceq Sf\), we have

$$ \min \bigl\{ H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u),H_{d_{q}}( \mathcal{T}f,\mathcal{T}\mathfrak{e},u)\bigr\} \geq \mu \bigl(D( \mathfrak{e},f,u)\bigr), $$

for all \(u>0\), where

$$ D(\mathfrak{e},f,u)=\min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e},f,u), \mathcal{F}_{d_{q}}(\mathfrak{e},\mathcal{T}\mathfrak{e},u), \mathcal{F}_{d_{q}}(f,\mathcal{T}f,u)\bigr\} . $$

(ii) If \(\mathfrak{e}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{ \circ })\),

$$ \mathcal{F}_{d_{q}}(\mathfrak{e},\mathcal{T}\mathfrak{e},u)= \mathcal{F}_{d_{q}}(\mathfrak{e},f,u)\textit{ and } \mathcal{F}_{d_{q}}( \mathcal{T}\mathfrak{e},\mathfrak{e},u)= \mathcal{F}_{d_{q}}(f,\mathfrak{e},u), $$

then (iia) If \(\mathfrak{e}\preceq S\mathfrak{e}\), then \(f\succeq Sf\). (iib) If \(\mathfrak{e}\succeq S\mathfrak{e} \), then \(f\preceq Sf\). (iii) The set \(G(S)=\{\mathfrak{e}:\mathfrak{e}\preceq S\mathfrak{e}\textit{ and } \mathfrak{e}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\}\) is closed and contains \(\mathfrak{e}_{\circ }\). (iv) For \(k\in \cup \{0\}\), we have

$$ \underset{p=0}{\overset{k}{\circledast }}\min \biggl\{ \mu ^{p} \biggl(\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{\circ },\frac{u_{\circ }}{2^{p+1}}\biggr)\biggr), \mu ^{p}\biggl(\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{\circ },\mathfrak{e}_{1}, \frac{u_{\circ }}{2^{p+1}} \biggr)\biggr)\biggr\} >1-r. $$

Then, the subsequence \(\{\mathfrak{e}_{2k}\}\) of \(\{\mathcal{YT}(\mathfrak{e}_{k})\}\) is a sequence in \(G(S)\) and \(\mathfrak{e}_{2k}\rightarrow \mathfrak{e}^{\divideontimes }\in G(S)\) and \(\mathcal{F}_{d_{q}}(\mathfrak{e}^{\divideontimes },\mathfrak{e}^{\divideontimes },u)=1\). Also, if the inequality (i) holds for \(\mathfrak{e}^{\divideontimes }\), then S and \(\mathcal{T}\) have a common fixed point \(\mathfrak{e}^{\divideontimes }\) in \(B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\).

Proof

Since \(\mathfrak{e}_{\circ }\in G(S)\), \(\mathrm{(iii)}\) implies that \(\mathfrak{e}_{\circ }\preceq S\mathfrak{e}_{\circ }\) and \(\mathfrak{e}_{\circ }\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\). Consider the sequence \(\{\mathcal{YT}(\mathfrak{e}_{k})\}\). Then, there exists \(\mathfrak{e}_{1}\in \mathcal{T}\mathfrak{e}_{\circ }\) such that

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathcal{T} \mathfrak{e}_{ \circ },u)=\mathcal{F}_{d_{q}}( \mathfrak{e}_{\circ },\mathfrak{e}_{1},u) \quad \text{and}\quad \mathcal{F}_{d_{q}}(\mathcal{T}\mathfrak{e}_{\circ }, \mathfrak{e}_{\circ },u)=\mathcal{F}_{d_{q}}( \mathfrak{e}_{1}, \mathfrak{e}_{\circ },u). $$

Now, \(\mathrm{(iia)}\) implies that \(\mathfrak{e}_{1}\succeq S\mathfrak{e}_{1}\). By using the property of the t-norm and (iv), we have

$$\begin{aligned}& \min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ }, \mathfrak{e}_{1},u_{ \circ }),\mathcal{F}_{d_{q}}( \mathfrak{e}_{1},\mathfrak{e}_{\circ },u_{ \circ }) \bigr\} \\& \quad= \min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ }, \mathfrak{e}_{1},u_{\circ }),\mathcal{F}_{d_{q}}( \mathfrak{e}_{1},\mathfrak{e}_{ \circ },u_{\circ }) \bigr\} \circledast 1 \\& \quad\geq \min \biggl\{ \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{\circ }, \mathfrak{e}_{1},\frac{u_{\circ }}{2}\biggr), \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{\circ },\frac{u_{\circ }}{2}\biggr)\biggr\} \circledast \min \biggl\{ \mu \biggl(\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{\circ },\mathfrak{e}_{1},\frac{u_{\circ }}{2^{2}} \biggr)\biggr), \\& \qquad{}\mu \biggl(\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{\circ }, \frac{u_{\circ }}{2^{2}}\biggr)\biggr)\biggr\} \\& \quad= \underset{p=0}{\overset{1}{\circledast }}\min \biggl\{ \mu ^{p} \biggl( \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{\circ }, \frac{u_{\circ }}{2^{p+1}}\biggr)\biggr),\mu ^{p}\biggl(\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{\circ }, \mathfrak{e}_{1}, \frac{u_{\circ }}{2^{p+1}}\biggr)\biggr)\biggr\} \\& \quad> 1-r. \end{aligned}$$

It follows that \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{1},u_{\circ })>1-r\) and \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{\circ },u_{\circ })>1-r\). Hence, \(\mathfrak{e}_{1}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\). Also,

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathcal{T} \mathfrak{e}_{1},u)= \mathcal{F}_{d_{q}}( \mathfrak{e}_{1},\mathfrak{e}_{2},u)\quad \text{and}\quad \mathcal{F}_{d_{q}}(\mathcal{T}\mathfrak{e}_{1}, \mathfrak{e}_{1},u)=\mathcal{F}_{d_{q}}(\mathfrak{e}_{2},\mathfrak{e}_{1},u). $$

As \(\mathfrak{e}_{1}\succeq S\mathfrak{e}_{1}\), \(\mathrm{(iib)}\) implies \(\mathfrak{e}_{2}\preceq S\mathfrak{e}_{2}\). By the triangle inequality, we have

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{2},u_{\circ }) \geq \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{\circ }, \mathfrak{e}_{1}, \frac{u_{\circ }}{2}\biggr)\circledast \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{2}, \frac{u_{\circ }}{2}\biggr). $$
(2.1)

By Lemma 1.13, we have

$$\begin{aligned} \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{2},\frac{u}{2}\biggr) \geq &H_{d_{q}}\biggl(\mathcal{T}\mathfrak{e}_{\circ },\mathcal{T} \mathfrak{e}_{1},\frac{u}{2}\biggr) \\ \geq &\min \biggl\{ H_{d_{q}}\biggl(\mathcal{T}\mathfrak{e}_{\circ }, \mathcal{T}\mathfrak{e}_{1},\frac{u}{2} \biggr),H_{d_{q}}\biggl(\mathcal{T}\mathfrak{e}_{1}, \mathcal{T}\mathfrak{e}_{\circ },\frac{u}{2}\biggr) \biggr\} . \end{aligned}$$

As \(\mathfrak{e}_{\circ }\), \(\mathfrak{e}_{1}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k}) \}\), \(\mathfrak{e}_{1}\succeq S\mathfrak{e}_{1}\) and \(\mathfrak{e}_{\circ }\preceq S\mathfrak{e}_{\circ }\), by (i), we have

$$\begin{aligned} \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{2},\frac{u}{2}\biggr) \geq &\mu \biggl(D \biggl(\mathfrak{e}_{1},\mathfrak{e}_{\circ }, \frac{u}{2}\biggr)\biggr) \\ =&\mu \biggl(\min \biggl\{ \mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{1},\mathfrak{e}_{ \circ },\frac{u}{2}\biggr),\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{\circ },\mathcal{T} \mathfrak{e}_{\circ }, \frac{u}{2}\biggr),\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{1}, \mathcal{T}\mathfrak{e}_{1}, \frac{u}{2}\biggr)\biggr\} \biggr) \\ =&\mu \biggl(\min \biggl\{ \mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{1},\mathfrak{e}_{ \circ },\frac{u}{2}\biggr),\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{\circ },\mathfrak{e}_{1},\frac{u}{2}\biggr),\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{1},\mathfrak{e}_{2}, \frac{u}{2} \biggr)\biggr\} \biggr). \end{aligned}$$

If \(\min \{\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{\circ }, \frac{u}{2}),\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{1}, \frac{u}{2}),\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{2},\frac{u}{2}) \}=\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{2},\frac{u}{2})\), then a contradiction arises due to the fact that \(\mu (u)>u\). Hence, we have

$$ \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{2},\frac{u}{2}\biggr) \geq \mu \biggl(\min \biggl\{ \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{ \circ },\frac{u}{2}\biggr),\mathcal{F}_{d_{q}} \biggl(\mathfrak{e}_{\circ },\mathfrak{e}_{1}, \frac{u}{2}\biggr)\biggr\} \biggr). $$
(2.2)

Using (2.2) in (2.1), we have

$$ \begin{gathered} \begin{aligned} \mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{2},u_{\circ }) \geq {}&\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{\circ }, \mathfrak{e}_{1}, \frac{u_{\circ }}{2}\biggr)\circledast \mu \biggl( \min \biggl\{ \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{\circ },\frac{u_{\circ }}{2}\biggr), \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{ \circ },\mathfrak{e}_{1},\frac{u_{\circ }}{2}\biggr)\biggr\} \biggr) \\ \geq {}&\min \biggl\{ \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{\circ }, \mathfrak{e}_{1},\frac{u_{\circ }}{2}\biggr), \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{\circ },\frac{u_{\circ }}{2}\biggr)\biggr\} \\ &{}\circledast \min \biggl\{ \mu \biggl(\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{\circ },\mathfrak{e}_{1},\frac{u_{\circ }}{2^{2}}\biggr)\biggr),\mu \biggl(\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{1},\mathfrak{e}_{\circ }, \frac{u_{\circ }}{2^{2}}\biggr)\biggr)\biggr\} \\ ={}&\underset{p=0}{\overset{1}{\circledast }}\min \biggl\{ \mu ^{p} \biggl( \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{\circ }, \mathfrak{e}_{1}, \frac{u_{\circ }}{2^{p+1}}\biggr)\biggr),\mu ^{p}\biggl(\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{\circ }, \frac{u_{\circ }}{2^{p+1}}\biggr)\biggr)\biggr\} . \end{aligned} \\ \mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{2},u_{\circ })>1-r. \end{gathered} $$
(2.3)

Now, by the triangular inequality, we have

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2},\mathfrak{e}_{\circ },u_{\circ }) \geq \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{2}, \mathfrak{e}_{1}, \frac{u_{\circ }}{2}\biggr)\circledast \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{ \circ },\frac{u_{\circ }}{2}\biggr). $$
(2.4)

By Lemma 1.13, we have

$$\begin{aligned} \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{2}, \mathfrak{e}_{1},\frac{u}{2}\biggr) \geq &H_{d_{q}}\biggl(\mathcal{T}\mathfrak{e}_{1},\mathcal{T} \mathfrak{e}_{ \circ },\frac{u}{2}\biggr) \\ \geq &\min \biggl\{ H_{d_{q}}\biggl(\mathcal{T}\mathfrak{e}_{1}, \mathcal{T} \mathfrak{e}_{\circ },\frac{u}{2} \biggr),H_{d_{q}}\biggl(\mathcal{T}\mathfrak{e}_{\circ }, \mathcal{T}\mathfrak{e}_{1},\frac{u}{2}\biggr) \biggr\} . \end{aligned}$$

As \(\mathfrak{e}_{\circ }\), \(\mathfrak{e}_{1}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k}) \},\mathfrak{e}_{1}\succeq S\mathfrak{e}_{1}\) and \(\mathfrak{e}_{\circ }\preceq S\mathfrak{e}_{\circ }\), by (i), we have

$$\begin{aligned} F_{d_{q}}\biggl(e_{2},e_{1}, \frac{u}{2}\biggr) \geq &\mu \biggl(D\biggl(e_{1},e_{\circ }, \frac{u}{2}\biggr)\biggr) \\ =&\mu \biggl(\min \biggl\{ \mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{1},\mathfrak{e}_{ \circ },\frac{u}{2}\biggr),\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{1},\mathfrak{e}_{2}, \frac{u}{2} \biggr),\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{\circ }, \mathfrak{e}_{1}, \frac{u}{2}\biggr)\biggr\} \biggr). \end{aligned}$$

If \(\min \{\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{\circ }, \frac{u}{2}),\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{2}, \frac{u}{2}),\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{1}, \frac{u}{2})\}=\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{2},\frac{u}{2})\), then by (2.2)

$$ \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{2}, \mathfrak{e}_{1},\frac{u}{2}\biggr) \geq \mu (\min \{ \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{ \circ },\frac{u}{2}\biggr),\mathcal{F}_{d_{q}} \biggl(\mathfrak{e}_{\circ },\mathfrak{e}_{1}, \frac{u}{2}\biggr). $$

If \(\min \{\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{\circ }, \frac{u}{2}),\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{2}, \frac{u}{2}),\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{1}, \frac{u}{2})\}=\min \{\mathcal{F}_{d_{q}}(\mathfrak{e}_{1},\mathfrak{e}_{\circ }, \frac{u}{2}),\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{1}, \frac{u}{2})\}\), then in both cases, we have

$$ \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{2}, \mathfrak{e}_{1},\frac{u}{2}\biggr) \geq \mu \biggl(\min \biggl\{ \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{ \circ },\frac{u}{2}\biggr),\mathcal{F}_{d_{q}} \biggl(\mathfrak{e}_{\circ },\mathfrak{e}_{1}, \frac{u}{2}\biggr)\biggr\} \biggr). $$
(2.5)

By inserting (2.5) into (2.4), we have

$$ \begin{gathered} \begin{aligned} \mathcal{F}_{d_{q}}(\mathfrak{e}_{2},\mathfrak{e}_{\circ },u_{\circ }) \geq {}&\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{\circ }, \frac{u_{\circ }}{2}\biggr)\circledast \mu \biggl( \min \biggl\{ \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{\circ },\frac{u_{\circ }}{2}\biggr), \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{ \circ },\mathfrak{e}_{1},\frac{u_{\circ }}{2}\biggr)\biggr\} \biggr) \\ \geq {}&\min \biggl\{ \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{ \circ },\frac{u_{\circ }}{2}\biggr), \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{\circ }, \mathfrak{e}_{1},\frac{u_{\circ }}{2}\biggr)\biggr\} \\ &{}\circledast \min \biggl\{ \mu \biggl(\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{1},\mathfrak{e}_{ \circ },\frac{u_{\circ }}{2^{2}}\biggr)\biggr),\mu \biggl(\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{ \circ },\mathfrak{e}_{1}, \frac{u_{\circ }}{2^{2}}\biggr)\biggr)\biggr\} \\ ={}&\underset{p=0}{\overset{1}{\circledast }}\min \biggl\{ \mu ^{p} \biggl( \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{\circ }, \frac{u_{\circ }}{2^{p+1}}\biggr)\biggr),\mu ^{p}\biggl(\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{\circ }, \mathfrak{e}_{1}, \frac{u_{\circ }}{2^{p+1}}\biggr)\biggr)\biggr\} , \end{aligned} \\ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2},\mathfrak{e}_{\circ },u_{\circ })>1-r. \end{gathered} $$
(2.6)

From (2.3) and (2.6), it follows that \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{2},u_{\circ })>1-r\) and \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{2},\mathfrak{e}_{\circ },u_{\circ })>1-r\). Hence, \(\mathfrak{e}_{2}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\). Also,

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2},\mathcal{T} \mathfrak{e}_{2},u)= \mathcal{F}_{d_{q}}( \mathfrak{e}_{2},\mathfrak{e}_{3},u)\quad \text{and}\quad \mathcal{F}_{d_{q}}(\mathcal{T}\mathfrak{e}_{2}, \mathfrak{e}_{2},u)=\mathcal{F}_{d_{q}}(\mathfrak{e}_{3},\mathfrak{e}_{2},u). $$

As \(\mathfrak{e}_{2}\preceq S\mathfrak{e}_{2}\), by \(\mathrm{(iib),}\) we have \(\mathfrak{e}_{3}\succeq S\mathfrak{e}_{3}\). Let \(\mathfrak{e}_{3},\mathfrak{e}_{4},\ldots,\mathfrak{e}_{s}\in B_{\mathcal{F}_{dq}}( \mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k})\}\), \(\mathfrak{e}_{s}\preceq S\mathfrak{e}_{s}\) and \(\mathfrak{e}_{s-1}\succeq S\mathfrak{e}_{s-1}\) for some \(s\in \mathbb{N} \), where \(s=2p\) and \(p=1,2,3,\ldots,\frac{s}{2}\). By using Lemma 1.13, we have

$$\begin{aligned} \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p},\mathfrak{e}_{2p+1},u) \geq &H_{d_{q}}( \mathcal{T}\mathfrak{e}_{2p-1},\mathcal{T} \mathfrak{e}_{2p},u) \\ \geq &\min \bigl\{ H_{d_{q}}(\mathcal{T}\mathfrak{e}_{2p-1}, \mathcal{T} \mathfrak{e}_{2p},u),H_{d_{q}}( \mathcal{T}\mathfrak{e}_{2p},\mathcal{T} \mathfrak{e}_{2p-1},u) \bigr\} . \end{aligned}$$

As \(\mathfrak{e}_{2p-1}\), \(\mathfrak{e}_{2p}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k}) \}\), \(\mathfrak{e}_{2p-1}\succeq S\mathfrak{e}_{2p-1}\) and \(\mathfrak{e}_{2p}\preceq S\mathfrak{e}_{2p}\), by (i), we have

$$\begin{aligned} \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p},\mathfrak{e}_{2p+1},u) \geq & \mu \bigl(D(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p},u)\bigr) \\ =&\mu \bigl(\min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p},u),\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-1},\mathcal{T}\mathfrak{e}_{2p-1},u), \\ &\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p},\mathcal{T} \mathfrak{e}_{2p},u) \bigr\} \bigr) \\ =&\mu \bigl(\min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p},u),\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p},\mathfrak{e}_{2p+1},u)\bigr\} \bigr). \end{aligned}$$

If \(\min \{\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1},\mathfrak{e}_{2p},u),\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p},\mathfrak{e}_{2p+1},u)\}= \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p},\mathfrak{e}_{2p+1},u)\), then a contradiction arises due to the fact that \(\mu (u)>u\). Therefore,

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p},\mathfrak{e}_{2p+1},u) \geq \mu \bigl(\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p},u)\bigr), $$
(2.7)

which implies that

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p},\mathfrak{e}_{2p+1},u) \geq \min \bigl\{ \mu \bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-1},\mathfrak{e}_{2p},u)\bigr),\mu \bigl( \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p}, \mathfrak{e}_{2p-1},u)\bigr)\bigr\} . $$
(2.8)

Now, by Lemma 1.13, we have

$$\begin{aligned} \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1},\mathfrak{e}_{2p},u) \geq &H_{d_{q}}( \mathcal{T}\mathfrak{e}_{2p-2},\mathcal{T} \mathfrak{e}_{2p-1},u) \\ \geq &\min \bigl\{ H_{d_{q}}(\mathcal{T}\mathfrak{e}_{2p-2}, \mathcal{T} \mathfrak{e}_{2p-1},u),H_{d_{q}}( \mathcal{T}\mathfrak{e}_{2p-1},\mathcal{T} \mathfrak{e}_{2p-2},u) \bigr\} . \end{aligned}$$

As \(\mathfrak{e}_{2p-1}\), \(\mathfrak{e}_{2p-2}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k}) \},\mathfrak{e}_{2p-1}\succeq S\mathfrak{e}_{2p-1}\) and \(\mathfrak{e}_{2p-2}\preceq S\mathfrak{e}_{2p-2}\), by (i), we have

$$\begin{aligned} \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1},\mathfrak{e}_{2p},u) \geq & \mu \bigl(D(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p-2},u)\bigr) \\ =&\mu \bigl(\min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p-2},u),\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-1},\mathfrak{e}_{2p},u), \\ &\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2}, \mathfrak{e}_{2p-1},u)\bigr\} \bigr). \end{aligned}$$

If \(\min \{\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1},\mathfrak{e}_{2p-2},u),\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1},\mathfrak{e}_{2p},u), \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2},\mathfrak{e}_{2p-1},u)\}=\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1},\mathfrak{e}_{2p},u)\), then a contradiction arises due to the fact that \(\mu (u)>u\), so

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1},\mathfrak{e}_{2p},u) \geq \mu \bigl( \min \bigl\{ \mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-1},\mathfrak{e}_{2p-2},u), \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2}, \mathfrak{e}_{2p-1},u)\bigr\} \bigr). $$

Apply μ on both sides. Since μ is a nondecreasing function,

$$\begin{aligned}& \begin{gathered} \mu \bigl(\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p},u)\bigr) \geq \mu ^{2}\bigl(\min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p-2},u),\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2},\mathfrak{e}_{2p-1},u) \bigr)\bigr\} ,\\ \mu \bigl(\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p},u)\bigr) \geq \min \bigl\{ \mu ^{2}\bigl( \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p-2},u) \bigr),\mu ^{2}\bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-2}, \mathfrak{e}_{2p-1},u)\bigr) \bigr\} . \end{gathered} \end{aligned}$$
(2.9)

By inserting (2.9) into (2.7), we obtain

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p},\mathfrak{e}_{2p+1},u) \geq \min \bigl\{ \mu ^{2}\bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-1},\mathfrak{e}_{2p-2},u)\bigr), \mu ^{2}\bigl(\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2}, \mathfrak{e}_{2p-1},u)\bigr) \bigr\} . $$
(2.10)

Now, by Lemma 1.13, we have

$$\begin{aligned} \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2},\mathfrak{e}_{2p-1},u) \geq &H_{dq}(\mathcal{T}\mathfrak{e}_{2p-3}, \mathcal{T}\mathfrak{e}_{2p-2},u) \\ \geq &\min \bigl\{ H_{dq}(\mathcal{T}\mathfrak{e}_{2p-3}, \mathcal{T}\mathfrak{e}_{2p-2},u),H_{dq}( \mathcal{T}\mathfrak{e}_{2p-2}, \mathcal{T}\mathfrak{e}_{2p-3},u) \bigr\} . \end{aligned}$$

As \(\mathfrak{e}_{2p-3},\mathfrak{e}_{2p-2}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k}) \}\), \(\mathfrak{e}_{2p-3}\succeq S\mathfrak{e}_{2p-3}\) and \(\mathfrak{e}_{2p-2}\preceq S\mathfrak{e}_{2p-2}\), by \(\mathrm{(i)}\), we have

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2},\mathfrak{e}_{2p-1},u) \geq \mu \bigl(\min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-3}, \mathfrak{e}_{2p-2},u),\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-2},\mathfrak{e}_{2p-1},u) \bigr\} \bigr). $$

If \(\min \{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-3},\mathfrak{e}_{2p-2},u),\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2},\mathfrak{e}_{2p-1},u) \} =\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2}, \mathfrak{e}_{2p-1},u)\), then a contradiction arises. Therefore,

$$\begin{aligned}& \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2},\mathfrak{e}_{2p-1},u) \geq \mu \bigl(\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-3}, \mathfrak{e}_{2p-2},u)\bigr), \end{aligned}$$
(2.11)
$$\begin{aligned}& \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2},\mathfrak{e}_{2p-1},u) \geq \mu \bigl(\min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-3}, \mathfrak{e}_{2p-2},u),\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-2},\mathfrak{e}_{2p-3},u) \bigr\} \bigr), \\& \mu ^{2}\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2}, \mathfrak{e}_{2p-1},u) \geq \mu ^{3}\bigl(\min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-3}, \mathfrak{e}_{2p-2},u), \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2},\mathfrak{e}_{2p-3},u) \bigr\} \bigr). \end{aligned}$$
(2.12)

Now, by Lemma 1.13, we have

$$\begin{aligned} \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1},\mathfrak{e}_{2p-2},u) \geq &H_{dq}(\mathcal{T}\mathfrak{e}_{2p-2}, \mathcal{T}\mathfrak{e}_{2p-3},u) \\ \geq &\min \bigl\{ H_{dq}(\mathcal{T}\mathfrak{e}_{2p-3}, \mathcal{T}\mathfrak{e}_{2p-2},u),H_{dq}( \mathcal{T}\mathfrak{e}_{2p-2}, \mathcal{T}\mathfrak{e}_{2p-3},u) \bigr\} . \end{aligned}$$

As \(\mathfrak{e}_{2p-3},\mathfrak{e}_{2p-2}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k}) \}\), \(\mathfrak{e}_{2p-3}\succeq S\mathfrak{e}_{2p-3}\) and \(\mathfrak{e}_{2p-2}\preceq S\mathfrak{e}_{2p-2}\), by \(\mathrm{(i)}\), we have

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1},\mathfrak{e}_{2p-2},u) \geq \mu \bigl(\min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-3}, \mathfrak{e}_{2p-2},u),\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-2},\mathfrak{e}_{2p-1},u) \bigr\} \bigr). $$

By using inequality (2.11), we have

$$\begin{aligned} \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1},\mathfrak{e}_{2p-2},u) \geq & \mu \bigl(\min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-3}, \mathfrak{e}_{2p-2},u),\mu \bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-3}, \mathfrak{e}_{2p-2},u)\bigr) \bigr\} \bigr) \\ =&\mu \bigl(\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-3}, \mathfrak{e}_{2p-2},u)\bigr). \end{aligned}$$

This implies that

$$ \mu ^{2}\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p-2},u) \geq \mu ^{2}\bigl(\mu \bigl(\min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-3}, \mathfrak{e}_{2p-2},u),\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-2},\mathfrak{e}_{2p-3},u) \bigr\} \bigr)\bigr). $$
(2.13)

Combining inequalities (2.10), (2.12), and (2.13), we have

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p},\mathfrak{e}_{2p+1},u) \geq \min \bigl\{ \mu ^{3}\bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-3}, \mathfrak{e}_{2p-2},u)\bigr), \mu ^{3}\bigl(\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2}, \mathfrak{e}_{2p-3},u)\bigr) \bigr\} \text{.} $$
(2.14)

Following the patterns of inequalities (2.8), (2.10), and (2.14), we have

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p},\mathfrak{e}_{2p+1},u) \geq \min \bigl\{ \mu ^{2p}\bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{\circ }, \mathfrak{e}_{1},u)\bigr), \mu ^{2p}\bigl(\mathcal{F}_{d_{q}}(\mathfrak{e}_{1}, \mathfrak{e}_{ \circ },u)\bigr) \bigr\} . $$
(2.15)

Now, by Lemma 1.13, we have

$$\begin{aligned} \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p+1},\mathfrak{e}_{2p},u) \geq &H_{d_{q}}( \mathcal{T}\mathfrak{e}_{2p},\mathcal{T} \mathfrak{e}_{2p-1},u) \\ \geq &\min \bigl\{ H_{d_{q}}(\mathcal{T}\mathfrak{e}_{2p-1}, \mathcal{T} \mathfrak{e}_{2p},u),H_{d_{q}}( \mathcal{T}\mathfrak{e}_{2p},\mathcal{T} \mathfrak{e}_{2p-1},u) \bigr\} . \end{aligned}$$

As \(\mathfrak{e}_{2p-1}\), \(\mathfrak{e}_{2p}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k}) \},\mathfrak{e}_{2p-1}\succeq S\mathfrak{e}_{2p-1}\) and \(\mathfrak{e}_{2p}\preceq S\mathfrak{e}_{2p}\), by (i), we have

$$\begin{aligned} \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p+1},\mathfrak{e}_{2p},u) \geq & \mu \bigl(\min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p},u),\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-1},\mathfrak{e}_{2p},u), \\ &\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p}, \mathfrak{e}_{2p+1},u)\bigr\} \bigr) \\ =&\mu \bigl(\min \bigl\{ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p},u),\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p},\mathfrak{e}_{2p+1},u)\bigr\} \bigr). \end{aligned}$$

Using (2.7), we have

$$\begin{aligned}& \begin{gathered} \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p+1},\mathfrak{e}_{2p},u) \geq \mu \bigl( \min \bigl\{ \mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-1},\mathfrak{e}_{2p},u),\mu \bigl( \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p},u)\bigr)\bigr\} \bigr)\\ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p+1},\mathfrak{e}_{2p},u) \geq \mu \bigl(\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-1}, \mathfrak{e}_{2p},u)\bigr), \end{gathered} \end{aligned}$$
(2.16)

which implies that

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p+1},\mathfrak{e}_{2p},u) \geq \min \bigl\{ \mu \bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-1},\mathfrak{e}_{2p},u)\bigr),\mu \bigl( \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p}, \mathfrak{e}_{2p-1},u)\bigr)\bigr\} . $$
(2.17)

By (2.9) and (2.16), we obtain

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p+1},\mathfrak{e}_{2p},u) \geq \min \bigl\{ \mu ^{2}\bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-1},\mathfrak{e}_{2p-2},u)\bigr), \mu ^{2}\bigl(\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-2}, \mathfrak{e}_{2p-1},u)\bigr) \bigr\} . $$
(2.18)

Combining (2.12), (2.13), and (2.18), we have

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p+1},\mathfrak{e}_{2p},u) \geq \min \bigl\{ \mu ^{3}\bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p-2},\mathfrak{e}_{2p-3},u)\bigr), \mu ^{3}\bigl(\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p-3}, \mathfrak{e}_{2p-2},u)\bigr) \bigr\} . $$

Continuing in this way, we obtain

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p+1},\mathfrak{e}_{2p},u) \geq \min \bigl\{ \mu ^{2p}\bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{1},\mathfrak{e}_{ \circ },u)\bigr),\mu ^{2p}\bigl(\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ }, \mathfrak{e}_{1},u)\bigr)\bigr\} . $$
(2.19)

If \(s=2p+1\), \(p=1,2,\ldots,\frac{s-1}{2}\), \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{2p+1},\mathcal{T}\mathfrak{e}_{2p+1},u)=\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p+1},\mathfrak{e}_{2p+2},u)\) and \(\mathcal{F}_{d_{q}}(\mathcal{T}\mathfrak{e}_{2p+1},\mathfrak{e}_{2p+1},u)=\mathcal{F}_{d_{q}}( \mathfrak{e}_{2p+2},\mathfrak{e}_{2p+1},u)\). By using the same procedure as above, we have

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p+1},\mathfrak{e}_{2p+2},u) \geq \min \bigl\{ \mu ^{2p+1}\bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{1},\mathfrak{e}_{ \circ },u)\bigr),\mu ^{2p+1}\bigl(\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ }, \mathfrak{e}_{1},u)\bigr)\bigr\} $$
(2.20)

and

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{2p+2},\mathfrak{e}_{2p+1},u) \geq \min \bigl\{ \mu ^{2p+1}\bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{1},\mathfrak{e}_{ \circ },u)\bigr),\mu ^{2p+1}\bigl(\mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ }, \mathfrak{e}_{1},u)\bigr)\bigr\} . $$
(2.21)

By combining (2.15) and (2.20), we have

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{s},\mathfrak{e}_{s+1},u) \geq \min \bigl\{ \mu ^{s}\bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{1},\mathfrak{e}_{\circ },u)\bigr), \mu ^{s}\bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{\circ },\mathfrak{e}_{1},u)\bigr)\bigr\} , \quad \text{for some }s\in $$
(2.22)

and by combining (2.19) and (2.21), we obtain

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{s+1},\mathfrak{e}_{s},u) \geq \min \bigl\{ \mu ^{s}\bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{1},\mathfrak{e}_{\circ },u)\bigr), \mu ^{s}\bigl(\mathcal{F}_{d_{q}}( \mathfrak{e}_{\circ },\mathfrak{e}_{1},u)\bigr)\bigr\} , \quad \text{for some }s\in . $$
(2.23)

By using the triangular inequality, \(\mathrm{(iv)}\) and (2.22), we have

$$\begin{aligned} \mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{s+1},u_{ \circ }) \geq &\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{\circ }, \mathfrak{e}_{1},\frac{u_{\circ }}{2}\biggr)\circledast \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{2},\frac{u_{\circ }}{2^{2}}\biggr)\circledast \cdots\circledast \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{s-1},\mathfrak{e}_{s},\frac{u_{\circ }}{2^{s}} \biggr) \\ &{}\circledast \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{s}, \mathfrak{e}_{s+1}, \frac{u_{\circ }}{2^{s}}\biggr) \\ \geq &\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{\circ }, \mathfrak{e}_{1}, \frac{u_{\circ }}{2}\biggr)\circledast \cdots \circledast \mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{s-1}, \mathfrak{e}_{s},\frac{u_{\circ }}{2^{s}}\biggr)\circledast \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{s}, \mathfrak{e}_{s+1}, \frac{u_{\circ }}{2^{s+1}}\biggr) \\ \geq &\min \biggl\{ \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{\circ }, \mathfrak{e}_{1},\frac{u_{\circ }}{2}\biggr), \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{\circ },\frac{u_{\circ }}{2}\biggr)\biggr\} \circledast \\ &\min \biggl\{ \mu \biggl(\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{\circ },\mathfrak{e}_{1},\frac{u_{\circ }}{2^{2}}\biggr)\biggr),\mu \biggl(\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{1},\mathfrak{e}_{\circ }, \frac{u_{\circ }}{2^{2}}\biggr)\biggr)\biggr\} \circledast \cdots \circledast \\ &\min \biggl\{ \mu ^{s}\biggl(\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{\circ }, \mathfrak{e}_{1},\frac{u_{\circ }}{2^{s+1}}\biggr)\biggr),\mu ^{s}\biggl( \mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{1},\mathfrak{e}_{\circ },\frac{u_{\circ }}{2^{s+1}}\biggr)\biggr)\biggr\} \\ =&\underset{p=0}{\overset{s}{\circledast }}\min \biggl\{ \mu ^{p} \biggl( \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{\circ }, \mathfrak{e}_{1}, \frac{u_{\circ }}{2^{p+1}}\biggr)\biggr),\mu ^{p}\biggl(\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{\circ }, \frac{u_{\circ }}{2^{p+1}}\biggr)\biggr)\biggr\} . \end{aligned}$$

Hence, by \(\mathrm{(iv)}\), we have

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{\circ },\mathfrak{e}_{s+1},u_{ \circ })>1-r. $$
(2.24)

Similarly, by the triangular inequality, \(\mathrm{(iv)}\) and (2.23), we have

$$ \mathcal{F}_{d_{q}}(\mathfrak{e}_{s+1},\mathfrak{e}_{\circ },u_{ \circ })>1-r. $$
(2.25)

From (2.24) and (2.25), \(\mathfrak{e}_{s+1}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\). Hence, by mathematical induction, we have \(\mathfrak{e}_{k}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{ \circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k})\}\), \(\mathfrak{e}_{2k}\preceq S\mathfrak{e}_{2k}\) and \(\mathfrak{e}_{2k+1}\succeq S\mathfrak{e}_{2k+1}\) for all k. Also, from (iii) \(\mathfrak{e}_{2k}\in G(S)\). Now, inequalities (2.22) and (2.23) will be held for all s. Now, for \(k,m\in \) with \(k< m\), we have

$$\begin{aligned} \mathcal{F}_{d_{q}}(\mathfrak{e}_{k},\mathfrak{e}_{k+m},u) \geq & \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{k}, \mathfrak{e}_{k+1},\frac{u}{2}\biggr)\circledast \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{k+1}, \mathfrak{e}_{k+2}, \frac{u}{2^{2}}\biggr) \\ &{}\circledast \cdots\circledast\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{k+m-2}, \mathfrak{e}_{k+m-1}, \frac{u}{2^{m-1}}\biggr)\circledast \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{k+m-1}, \mathfrak{e}_{k+m},\frac{u}{2^{m-1}}\biggr) \\ \geq &\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{k}, \mathfrak{e}_{k+1}, \frac{u}{2^{m}}\biggr)\circledast \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{k+1}, \mathfrak{e}_{k+2},\frac{u}{2^{m}}\biggr) \\ &{}\circledast \cdots\circledast\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{k+m-2}, \mathfrak{e}_{k+m-1}, \frac{u}{2^{m}}\biggr)\circledast \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{k+m-1}, \mathfrak{e}_{k+m},\frac{u}{2^{m}}\biggr) \\ \geq &\underset{p=0}{\overset{m-1}{\circledast }}\biggl\{ \mu ^{k+p}\biggl( \mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{\circ },\mathfrak{e}_{1},\frac{u}{2^{m}} \biggr)\biggr), \mu ^{k+p}\biggl(\mathcal{F}_{d_{q}} \biggl(\mathfrak{e}_{1},\mathfrak{e}_{\circ }, \frac{u}{2^{m}}\biggr)\biggr)\biggr\} . \end{aligned}$$

By Lemma 1.3,

$$ \lim_{k\rightarrow \infty }\mu ^{k+p}\biggl(\mathcal{F}_{d_{q}} \biggl(\mathfrak{e}_{\circ },\mathfrak{e}_{1}, \frac{u}{2^{m}}\biggr)\biggr)=1,\quad \text{for every }p\in \{0,1, \ldots,m-1\} $$

and

$$ \lim_{k\rightarrow \infty }\mu ^{k+p}\biggl(\mathcal{F}_{d_{q}} \biggl(\mathfrak{e}_{1},\mathfrak{e}_{\circ }, \frac{u}{2^{m}}\biggr)\biggr)=1, \quad \text{for every }p\in \{0,1, \ldots,m-1\}. $$

Hence, \(\mathcal{F}_{d_{q}}(\mathfrak{e}_{k},\mathfrak{e}_{k+m},u) \rightarrow 1\) as \(k\rightarrow \infty \). Thus, we proved that \(\{\mathcal{YT}(\mathfrak{e}_{k})\}\) is a left K-Cauchy sequence in \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\). As \((\mathcal{Y},\mathcal{F}_{d_{q}},\circledast )\) is left K-sequentially complete, so \(\{\mathcal{YT}(\mathfrak{e}_{k})\}\rightarrow \mathfrak{e}^{\divideontimes } \mathfrak{\in \mathcal{Y}}\). As \(\{\mathfrak{e}_{2k}\}\) is a subsequence of \(\{\mathcal{YT}(\mathfrak{e}_{k})\}\), so \(\mathfrak{e}_{2k}\rightarrow \mathfrak{e}^{\divideontimes }\mathfrak{.}\) Also, \(\{\mathfrak{e}_{2k}\}\) is a sequence in \(G(S)\) and \(G(S) \) is closed, so \(\mathfrak{e}^{\divideontimes }\in G(S)\) and therefore \(\mathfrak{e}^{\divideontimes }\preceq S\mathfrak{e}^{\divideontimes }\). Also,

$$ \lim_{k\rightarrow \infty }\mathcal{F}_{d_{q}}\bigl( \mathfrak{e}_{2k},\mathfrak{e}^{\divideontimes },u\bigr)=1= \lim_{k\rightarrow \infty }\mathcal{F}_{d_{q}}\bigl( \mathfrak{e}^{\divideontimes },\mathfrak{e}_{2k},u\bigr). $$
(2.26)

Now,

$$\begin{aligned}& \mathcal{F}_{d_{q}}\bigl(\mathfrak{e}^{\divideontimes }, \mathfrak{e}^{\divideontimes },u\bigr) \geq \mathcal{F}_{d_{q}} \biggl(\mathfrak{e}^{\divideontimes },\mathfrak{e}_{2k}, \frac{u}{2}\biggr)\circledast \mathcal{F}_{d_{q}} \biggl(\mathfrak{e}_{2k},\mathfrak{e}^{\divideontimes }, \frac{u}{2}\biggr) \\& \lim_{k\rightarrow \infty }\mathcal{F}_{d_{q}}\bigl( \mathfrak{e}^{\divideontimes },\mathfrak{e}^{\divideontimes },u\bigr) \geq 1 \circledast 1=1. \end{aligned}$$

Hence,

$$ \mathcal{F}_{d_{q}}\bigl(\mathfrak{e}^{\divideontimes }, \mathfrak{e}^{\divideontimes },u\bigr)=1. $$
(2.27)

Now,

$$\begin{aligned} \mathcal{F}_{d_{q}}\bigl(\mathfrak{e}_{2k+2},\mathcal{T} \mathfrak{e}^{\divideontimes },u\bigr) \geq &H_{d_{q}}\bigl( \mathcal{T}\mathfrak{e}_{2k+1},\mathcal{T} \mathfrak{e}^{\divideontimes },u\bigr) \\ \geq &\min \bigl\{ H_{d_{q}}\bigl(\mathcal{T}\mathfrak{e}_{2k+1}, \mathcal{T} \mathfrak{e}^{\divideontimes },u\bigr),H_{d_{q}} \bigl(\mathcal{T}\mathfrak{e}^{ \divideontimes },\mathcal{T} \mathfrak{e}_{2k+1},u\bigr)\bigr\} . \end{aligned}$$

By assumption, inequality (i) holds for \(\mathfrak{e}^{\divideontimes }\), also \(\mathfrak{e}\succeq S\mathfrak{e}_{2k+1}\) and \(\mathfrak{e}^{\divideontimes }\preceq S\mathfrak{e}^{\divideontimes }\). Hence,

$$\begin{aligned} \mathcal{F}_{d_{q}}\bigl(\mathfrak{e}_{2k+2},\mathcal{T} \mathfrak{e}^{\divideontimes },u\bigr) \geq &\mu \bigl(D\bigl( \mathfrak{e}_{2k+1}, \mathfrak{e}^{\divideontimes },u\bigr) \bigr) \\ =&\mu \bigl(\min \bigl\{ \mathcal{F}_{d_{q}}\bigl(\mathfrak{e}_{2k+1}, \mathfrak{e}^{\divideontimes },u\bigr),\mathcal{F}_{d_{q}}( \mathfrak{e}_{2k+1}, \mathfrak{e}_{2k+2},u), \mathcal{F}_{d_{q}}\bigl(\mathfrak{e}^{\divideontimes }, \mathcal{T}\mathfrak{e}^{\divideontimes },u\bigr)\bigr\} \bigr). \end{aligned}$$

Letting \(k\rightarrow \infty \) and by using (2.27), we obtain

$$ \mathcal{F}_{d_{q}}\bigl(\mathfrak{e}^{\divideontimes },\mathcal{T} \mathfrak{e}^{\divideontimes },u\bigr)\geq \mu \bigl( \mathcal{F}_{d_{q}}\bigl(\mathfrak{e}^{\divideontimes }, \mathcal{T}\mathfrak{e}^{\divideontimes },u\bigr)\bigr). $$

By definition of μ, we obtain

$$ \mathcal{F}_{d_{q}}\bigl(\mathfrak{e}^{\divideontimes },\mathcal{T} \mathfrak{e}^{\divideontimes },u\bigr)=1. $$
(2.28)
$$\begin{aligned} \mathcal{F}_{d_{q}}\bigl(\mathcal{T}\mathfrak{e}^{\divideontimes }, \mathfrak{e}^{\divideontimes },u\bigr) \geq &\mathcal{F}_{d_{q}} \biggl(\mathcal{T} \mathfrak{e}^{\divideontimes },\mathfrak{e}_{2k+2}, \frac{u}{2}\biggr)\circledast \mathcal{F}_{d_{q}} \biggl(\mathfrak{e}_{2k+2},\mathfrak{e}^{\divideontimes }, \frac{u}{2}\biggr) \\ \geq &H_{d_{q}}\biggl(\mathcal{T}\mathfrak{e}^{\divideontimes }, \mathcal{T}\mathfrak{e}_{2k+1},\frac{u}{2}\biggr) \circledast \mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{2k+2}, \mathfrak{e}^{\divideontimes },\frac{u}{2}\biggr) \\ \geq &\min \biggl\{ H_{d_{q}}\biggl(\mathcal{T}\mathfrak{e}^{\divideontimes }, \mathcal{T}\mathfrak{e}_{2k+1},\frac{u}{2} \biggr),H_{d_{q}}\biggl(\mathcal{T}\mathfrak{e}_{2k+1},\mathcal{T}\mathfrak{e}^{\divideontimes },\frac{u}{2}\biggr)\biggr\} \\ &{}\circledast\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{2k+2}, \mathfrak{e}^{ \divideontimes },\frac{u}{2}\biggr). \end{aligned}$$

By assumption, inequality \(\mathrm{(i)}\) holds for \(\mathfrak{e}^{\divideontimes }\), also \(\mathfrak{e}_{2k+1}\succeq S\mathfrak{e}_{2k+1}\) and \(\mathfrak{e}^{\divideontimes }\preceq S\mathfrak{e}^{\divideontimes }\). Hence,

$$\begin{aligned} \mathcal{F}_{d_{q}}\bigl(\mathcal{T}\mathfrak{e}^{\divideontimes }, \mathfrak{e}^{\divideontimes },u\bigr) \geq &\mu \biggl(D\biggl( \mathfrak{e}_{2k+1}, \mathfrak{e}^{\divideontimes }, \frac{u}{2}\biggr)\biggr)\circledast \mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{2k+2},\mathfrak{e}^{\divideontimes }, \frac{u}{2}\biggr) \\ =&\mu \biggl(\min \biggl\{ \mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{2k+1},\mathfrak{e}^{\divideontimes }, \frac{u}{2}\biggr),\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{2k+1},\mathfrak{e}_{2k+2}, \frac{u}{2}\biggr) \\ &\mathcal{F}_{d_{q}}\biggl(\mathfrak{e}^{\divideontimes },\mathcal{T} \mathfrak{e}^{\divideontimes },\frac{u}{2}\biggr)\biggr\} \biggr)\circledast \mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{2k+2}, \mathfrak{e}^{\divideontimes },\frac{u}{2}\biggr). \end{aligned}$$

Letting \(k\rightarrow \infty \), and by using (2.26) and (2.28), we obtain

$$ \mathcal{F}_{d_{q}}\bigl(\mathcal{T}\mathfrak{e}^{\divideontimes }, \mathfrak{e}^{\divideontimes },u\bigr)\geq \mu \biggl( \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}^{\divideontimes }, \mathcal{T}\mathfrak{e}^{\divideontimes }, \frac{u}{2}\biggr) \biggr)=\mu (1). $$

This implies that \(\mathcal{F}_{d_{q}}(\mathcal{T}\mathfrak{e}^{\divideontimes },\mathfrak{e}^{\divideontimes },u)=1\). Hence, \(\mathfrak{e}^{\divideontimes }\in \mathcal{T}\mathfrak{e}^{\divideontimes }\). Also,

$$ \mathfrak{e}^{\divideontimes }\preceq S\mathfrak{e}^{\divideontimes }, $$
(2.29)

and

$$ \mathcal{F}_{d_{q}}\bigl(\mathcal{T}\mathfrak{e}^{\divideontimes }, \mathfrak{e}^{\divideontimes },u\bigr)=\mathcal{F}_{d_{q}}\bigl( \mathfrak{e}^{ \divideontimes },\mathcal{T}\mathfrak{e}^{\divideontimes },u \bigr)=\mathcal{F}_{d_{q}}\bigl( \mathfrak{e}^{\divideontimes }, \mathfrak{e}^{\divideontimes },u\bigr)=1. $$

Then, from (ii)

$$ \mathfrak{e}^{\divideontimes }\succeq S\mathfrak{e}^{\divideontimes }. $$
(2.30)

From (2.29) and (2.30), we have \(\mathfrak{e}^{\divideontimes }\preceq S\mathfrak{e}^{\divideontimes }\preceq \mathfrak{e}^{\divideontimes }\). This implies

$$ \mathfrak{e}^{\divideontimes }\preceq f\preceq \mathfrak{e}^{ \divideontimes }\quad \text{for all }f \in S\mathfrak{e}^{\divideontimes }. $$

Therefore,

$$ \mathfrak{e}^{\divideontimes }=f \quad \text{for all }f\in S\mathfrak{e}^{\divideontimes }. $$

Hence, \(\mathfrak{e}^{\divideontimes }\) is a common fixed point of \(\mathcal{T}\) and S. □

Example 2.2

Let \(\mathcal{Y}=[0,+\infty )\) and let \(\mathcal{F}_{d_{q}}(\mathfrak{e},f,u)=\frac{u}{u+\mathfrak{e}+2f}\) for all \(\mathfrak{e},f,u\in \mathcal{Y}\). Let \(\mathcal{R}\) be the binary relation on \(\mathcal{Y}\) defined by

$$\begin{aligned} \mathcal{R} =& \bigl\{ (\mathfrak{e},\mathfrak{e}):\mathfrak{e}\in \mathcal{Y} \bigr\} \cup \biggl\{ \biggl(\mathfrak{e}, \frac{\mathfrak{e}}{5}\biggr): \mathfrak{e}\in \biggl\{ 0,\frac{3}{7}, \frac{3}{7\times 25}, \frac{3}{7\times 25^{2}},\frac{3}{7\times 25^{3}},\ldots\biggr\} \biggr\} \\ &{}\cup \biggl\{ \biggl(\frac{\mathfrak{e}}{5},\mathfrak{e}\biggr):\mathfrak{e} \in \biggl\{ 0,\frac{3}{35},\frac{3}{35\times 25} \frac{3}{35\times 25^{2}},\ldots \biggr\} \biggr\} . \end{aligned}$$

Consider the partial order on \(\mathcal{Y}\) defined by

$$ (\mathfrak{e},f)\in \mathcal{Y}\times \mathcal{Y},\text{ } \mathfrak{e}\preceq f\text{ if and only }(\mathfrak{e},f)\in R. $$

Then, \((\mathcal{Y},\preceq ,\mathcal{F}_{d_{q}},\circledast )\) is a left K-sequentially complete ordered dislocated fuzzy quasimetric space with \(a\circledast b=\min \{a,b\}\). Define the pair of mappings \(\mathcal{T},S:\mathcal{Y}\rightarrow \mathcal{Y}\) by

$$ \mathcal{T}(\mathfrak{e})=\textstyle\begin{cases} {}[ \frac{\mathfrak{e}}{7},\frac{\mathfrak{e}}{5}]&\text{if } \mathfrak{e}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{ \mathcal{YT}(\mathfrak{e}_{k})\}, \\ {}[ 3\mathfrak{e},6\mathfrak{e}]&\text{if }\mathfrak{e}\notin B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{ \mathcal{YT}(\mathfrak{e}_{k})\}\end{cases} $$

and

$$ S(\mathfrak{e})=\textstyle\begin{cases} \{\frac{\mathfrak{e}}{5}\} &\text{if }\mathfrak{e}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{ \circ })\cap \{\mathcal{YT}(\mathfrak{e}_{k})\}, \\ {}[ 7\mathfrak{e}+5,8\mathfrak{e}+9]&\text{if }\mathfrak{e}\notin B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ },r,u_{\circ })\cap \{ \mathcal{YT}(\mathfrak{e}_{k})\}.\end{cases} $$

Define a nondecreasing mapping \(\mu :[0,1]\rightarrow {}[ 0,1]\) by

$$ \mu (u)=\sqrt{u}. $$

Observe that in this case, we have

$$\begin{aligned} A =& \{ \mathfrak{e}:\mathfrak{e}\preceq S\mathfrak{e} \} = \biggl\{ 0,\frac{3}{7},\frac{3}{7\times 25},\frac{3}{7\times 25^{2}}, \frac{3}{7\times 25^{3}},\ldots\biggr\} , \\ B =& \{ f:f\succeq Sf \} =\biggl\{ 0,\frac{3}{35}, \frac{3}{35\times 25}\frac{3}{35\times 25^{2}},\ldots\biggr\} . \end{aligned}$$

Let \(\mathfrak{e}_{\circ }=\frac{3}{7}\), \(r=\frac{3}{4}\) and \(u=1\)

$$\begin{aligned} B_{\mathcal{F}_{dq}}\biggl(\frac{3}{7},\frac{3}{4},1\biggr) =& \biggl\{ f: \mathcal{F}_{d_{q}}\biggl( \frac{3}{7},f,1\biggr)>1-\frac{3}{4}\wedge \mathcal{F}_{d_{q}}\biggl(f, \frac{3}{7},1\biggr)>1- \frac{3}{4} \biggr\} \\ =& \biggl\{ f:\frac{1}{1+\frac{3}{7}+2f}>\frac{1}{4}\wedge \frac{1}{1+f+2(\frac{3}{7})}>\frac{1}{4} \biggr\} \\ =& \{ f:28>10+14f\wedge 28>13+7f \} \\ =& \biggl\{ f:\frac{9}{7}>f\wedge \frac{15}{7}>f \biggr\} =\biggl[0, \frac{9}{7}\biggr). \end{aligned}$$

Then,

$$\begin{aligned} G(S) =& \bigl\{ \mathfrak{e}:\mathfrak{e}\preceq S\mathfrak{e} \text{ and }\mathfrak{e}\in B_{\mathcal{F}_{dq}}( \mathfrak{e}_{\circ ,}r,u_{ \circ }) \bigr\} \\ =& \biggl\{ 0,\frac{3}{7},\frac{3}{7\times 25}, \frac{3}{7\times 25^{2}},\frac{3}{7\times 25^{3}},\ldots \biggr\} \cap {}\biggl[ 0, \frac{9}{7}\biggr) \\ =& \biggl\{ 0,\frac{3}{7},\frac{3}{7\times 25}, \frac{3}{7\times 25^{2}},\frac{3}{7\times 25^{3}},\ldots \biggr\} . \end{aligned}$$

\(G(S)\) contains \(\frac{3}{7}\) and is also a closed set. Now, \(\frac{3}{7\times 25^{k-1}}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ ,}r,u_{ \circ })\), where k:

$$\begin{aligned} \mathcal{F}_{d_{q}}(\mathfrak{e},\mathcal{T}\mathfrak{e},u) =& \mathcal{F}_{d_{q}}\biggl(\frac{3}{7\times 25^{k-1}},\mathcal{T} \biggl( \frac{3}{7\times 25^{k-1}}\biggr),u\biggr) \\ =&\mathcal{F}_{d_{q}}\biggl(\frac{3}{7\times 25^{k-1}}, \frac{3}{5\times 7\times 25^{k-1}},u\biggr) \\ =&\mathcal{F}_{d_{q}}\biggl(\frac{3}{7\times 25^{k-1}}, \frac{3}{35\times 25^{k-1}},u\biggr), \\ \mathcal{F}_{d_{q}}(\mathcal{T}\mathfrak{e},\mathfrak{e},u) =& \mathcal{F}_{d_{q}}\biggl(\mathcal{T}\biggl( \frac{3}{7\times 25^{k-1}}\biggr), \frac{3}{7\times 25^{k-1}},u\biggr) \\ =&\mathcal{F}_{d_{q}}\biggl(\frac{3}{5\times 7\times 25^{k-1}}, \frac{3}{7\times 25^{k-1}},u\biggr) \\ =&\mathcal{F}_{d_{q}}\biggl(\frac{3}{35\times 25^{k-1}}, \frac{3}{7\times 25^{k-1}},u\biggr). \end{aligned}$$

Also, \((\frac{3}{7\times 25^{k-1}},\frac{3}{5\times 7\times 25^{k-1}})\in \mathcal{R}\), so \(\frac{3}{7\times 25^{k-1}}\preceq S(\frac{3}{7\times 25^{k-1}})\). As \((\frac{3}{5\times 35\times 25^{k-1}},\frac{3}{35\times 25^{k-1}}) \in \mathcal{R}\) so \(\frac{3}{35\times 25^{k-1}}\succeq S(\frac{3}{35\times 25^{k-1}})\). Hence, condition (iia) is satisfied. Now \(\frac{3}{35\times 25^{k-1}}\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{ \circ ,}r,u_{\circ })\), where k.

$$\begin{aligned}& \begin{aligned} \mathcal{F}_{d_{q}}\biggl(\frac{3}{35\times 25^{k-1}},\mathcal{T}\biggl( \frac{3}{35\times 25^{k-1}}\biggr),u\biggr) &=\mathcal{F}_{d_{q}}\biggl( \frac{3}{35\times 25^{k-1}},\frac{3}{5\times 35\times 25^{k-1}},u\biggr) \\ &=\mathcal{F}_{d_{q}}\biggl(\frac{3}{35\times 25^{k-1}}, \frac{3}{25\times 7\times 25^{k-1}},u\biggr) \\ &=\mathcal{F}_{d_{q}}\biggl(\frac{3}{35\times 25^{k-1}}, \frac{3}{7\times 25^{k}},u\biggr), \end{aligned} \\& \begin{aligned} \mathcal{F}_{d_{q}}\biggl(\mathcal{T}\biggl(\frac{3}{35\times 25^{k-1}} \biggr),\biggl( \frac{3}{35\times 25^{k-1}}\biggr),u\biggr) &=\mathcal{F}_{d_{q}} \biggl( \frac{3}{5\times 35\times 25^{k-1}},\frac{3}{35\times 25^{k-1}},u\biggr) \\ &=\mathcal{F}_{d_{q}}\biggl(\frac{3}{25\times 7\times 25^{k-1}}, \frac{3}{35\times 25^{k-1}},u\biggr) \\ &=\mathcal{F}_{d_{q}}\biggl(\frac{3}{7\times 25^{k}}, \frac{3}{35\times 25^{k-1}},u\biggr). \end{aligned} \end{aligned}$$

Also, \((\frac{3}{5\times 35\times 25^{k-1}},\frac{3}{35\times 25^{k-1}}) \in \mathcal{R}\) so \(\frac{3}{35\times 25^{k-1}}\succeq S(\frac{3}{35\times 25^{k-1}})\). As \((\frac{3}{7\times 25^{k}},\frac{3}{5\times 7\times 25^{k}})\in \mathcal{R}\) so \(\frac{3}{7\times 25^{k}}\preceq S(\frac{3}{7\times 25^{k}})\). Hence, condition (iia) is satisfied.

$$\begin{aligned} B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ ,}r,u_{\circ })\cap \mathcal{YT}(\mathfrak{e}_{k}) =& \biggl\{ \frac{3}{7},\frac{3}{7\times 5}, \frac{3}{7\times 5^{2}}, \frac{3}{7\times 5^{3}},\ldots \biggr\} \\ =& \biggl\{ \frac{3}{7},\frac{3}{35},\frac{3}{7\times 25}, \frac{3}{35\times 25},\frac{3}{7\times 25^{2}},\frac{3}{35\times 25^{2}}\ldots \biggr\} . \end{aligned}$$

Now, for \(\mathfrak{e},f\notin B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ ,}r,u_{ \circ })\cap \mathcal{YT}(\mathfrak{e}_{k})\). Let \(\mathfrak{e}=5\), \(f=6\) and \(u=\frac{1}{2}\).

$$\begin{aligned}& \begin{aligned} H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u) &= H_{d_{q}} \biggl( \mathcal{T}(5),\mathcal{T}(6),\frac{1}{2}\biggr) \\ &=H_{d_{q}}\biggl([15,30],[18,36],\frac{1}{2}\biggr) \\ &=\min \biggl\{ \mathcal{F}_{d_{q}}\biggl(15,36,\frac{1}{2} \biggr),\mathcal{F}_{d_{q}}\biggl(30,18,\frac{1}{2} \biggr)\biggr\} \\ &=\min \biggl\{ \frac{1}{175},\frac{1}{133}\biggr\} =0.005714, \end{aligned}\\& \begin{aligned} H_{d_{q}}(\mathcal{T}f,\mathcal{T}\mathfrak{e},u) &= H_{d_{q}} \biggl( \mathcal{T}(6),\mathcal{T}(5),\frac{1}{2}\biggr) \\ &=\min \{\mathcal{F}_{d_{q}}\biggl(18,30,\frac{1}{2}\biggr), \mathcal{F}_{d_{q}}\biggl(36,15,\frac{1}{2}\biggr) \\ &=\min \biggl\{ \frac{1}{181},\frac{1}{151}\biggr\} =0.00552486. \end{aligned}\\& \min \bigl\{ H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u),H_{d_{q}}( \mathcal{T}f,\mathcal{T}\mathfrak{e},u)\bigr\} =\min \{0.005714,0.00552486\}=0.00552486. \\& \begin{aligned} \mu \bigl(D(\mathfrak{e},f,u)\bigr) &=\mu \biggl\{ \mathcal{F}_{d_{q}} \biggl(5,6, \frac{1}{2}\biggr),\mathcal{F}_{d_{q}} \biggl(5,30,\frac{1}{2}\biggr),\mathcal{F}_{d_{q}}\biggl(6,36, \frac{1}{2}\biggr)\biggr\} \\ &=\mu \biggl\{ \frac{1}{35},\frac{1}{131},\frac{1}{157} \biggr\} =\mu \biggl\{ \frac{1}{157}\biggr\} =0.079749, \end{aligned}\\& \min \bigl\{ H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u),H_{d_{q}}( \mathcal{T}f,\mathcal{T}\mathfrak{e},u)\bigr\} \ngeq \mu \bigl(D( \mathfrak{e},f,u)\bigr). \end{aligned}$$

Hence, contraction does not hold on the whole space \(\mathcal{Y}\). Now, for \(\mathfrak{e}\), \(f\in B_{\mathcal{F}_{dq}}(\mathfrak{e}_{\circ ,}r,u_{\circ })\cap \mathcal{YT}(\mathfrak{e}_{k})\) with \(\mathfrak{e}\succeq S\mathfrak{e}\) and \(f\preceq Sf\), \(\mathfrak{e}\in B\) and \(f\in A\). In general, for some \(k,m\in \).

Case (i): Let \(k\leq m\), \(\mathfrak{e}=\frac{3}{35\times 25^{m-1}}\), \(f=\frac{3}{7\times 25^{k-1}}\) \(u>0\). We have

$$\begin{aligned}& \begin{aligned} H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u) ={}&H_{d_{q}} \biggl( \mathcal{T}\biggl(\frac{3}{35\times 25^{m-1}}\biggr),\mathcal{T} \biggl(\frac{3}{7\times 25^{k-1}}\biggr),u\biggr) \\ ={}&H_{d_{q}}\biggl(\biggl[\frac{3}{7\times 35\times 25^{m-1}}, \frac{3}{5\times 35\times 25^{m-1}} \biggr], \\ &{}\biggl[\frac{3}{7\times 7\times 25^{k-1}}, \frac{3}{5\times 7\times 25^{k-1}}\biggr],u\biggr) \\ ={}&\min \biggl\{ \mathcal{F}_{d_{q}}\biggl(\frac{3}{7\times 35\times 25^{m-1}}, \frac{3}{5\times 7\times 25^{k-1}},u\biggr), \\ &{}\mathcal{F}_{d_{q}}\biggl(\frac{3}{5\times 35\times 25^{m-1}}, \frac{3}{7\times 7\times 25^{k-1}},u\biggr)\biggr\} , \end{aligned} \\& H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u)=\min \biggl\{ \frac{u}{u+\frac{3}{7\times 35\times 25^{m-1}}+\frac{6}{35\times 25^{k-1}}}, \frac{u}{u+\frac{3}{5\times 35\times 25^{m-1}}+\frac{6}{7\times 7\times 25^{k-1}}} \biggr\} , \\& \begin{aligned} H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u) ={}&\min \biggl\{ \frac{245\times 25^{m-1}u}{245\times 25^{m-1}u+3+42\times 25^{m-k}}, \\ &{} \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+21+150\times 25^{m-k}} \biggr\} \\ ={}&\min \biggl\{ \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+3(5+70\times 25^{m-k})}, \\ &{} \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+3(7+50\times 25^{m-k})} \biggr\} \\ ={}& \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+15+210\times 25^{m-k}} \\ ={}& \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+15(1+14\times 25^{m-k})}. \end{aligned} \end{aligned}$$
(2.31)

Now,

$$\begin{aligned}& \begin{aligned} H_{d_{q}}(\mathcal{T}f,\mathcal{T}\mathfrak{e},u) ={}&H_{d_{q}} \biggl( \mathcal{T}\biggl(\frac{3}{7\times 25^{k-1}}\biggr),\mathcal{T} \biggl(\frac{3}{35\times 25^{m-1}}\biggr),u\biggr) \\ ={}&\min \biggl\{ \mathcal{F}_{d_{q}}\biggl(\frac{3}{49\times 25^{k-1}}, \frac{3}{175\times 25^{m-1}},u\biggr), \\ &{}\mathcal{F}_{d_{q}}\biggl(\frac{3}{35\times 25^{k-1}}, \frac{3}{245\times 25^{m-1}},u\biggr)\biggr\} , \end{aligned} \\& H_{d_{q}}(\mathcal{T}f,\mathcal{T}\mathfrak{e},u)=\min \biggl\{ \frac{u}{u+\frac{3}{49\times 25^{k-1}}+\frac{6}{175\times 25^{m-1}}}, \frac{u}{u+\frac{3}{35\times 25^{k-1}}+\frac{6}{245\times 25^{m-1}}}\biggr\} , \\& \begin{aligned} H_{d_{q}}(\mathcal{T}f,\mathcal{T}\mathfrak{e},u) ={}&\min \biggl\{ \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+3(25\times 25^{m-k}+14)}, \\ &{} \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+3(35\times 25^{m-k}+10)} \biggr\} \\ ={}& \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+105\times 25^{m-k}+30} \\ ={}& \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+15(2+7\times 25^{m-k})}. \end{aligned} \end{aligned}$$
(2.32)

Also,

$$\begin{aligned} \min \bigl\{ H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u),H_{d_{q}}( \mathcal{T}f,\mathcal{T}\mathfrak{e},u)\bigr\} =&\min \biggl\{ \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+15(1+14\times 25^{m-k})}, \\ & {}\frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+15(2+7\times 25^{m-k})} \biggr\} \\ =& \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+15+210\times 25^{m-k}}. \end{aligned}$$

Now, for \(\mathfrak{e}\succeq S\mathfrak{e}\), \(f\preceq Sf\), we have

$$\begin{aligned}& \begin{gathered} \begin{aligned} D(\mathfrak{e},f,u) ={}&\min \biggl\{ \mathcal{F}_{d_{q}}\biggl( \frac{3}{35\times 25^{m-1}},\frac{3}{7\times 25^{k-1}},u\biggr), \mathcal{F}_{d_{q}}\biggl( \frac{3}{35\times 25^{m-1}}, \\ &{}\biggl[\frac{3}{7\times 35\times 25^{m-1}}, \frac{3}{5\times 35\times 25^{m-1}}\biggr],u \biggr), \\ &{}\mathcal{F}_{d_{q}}\biggl(\frac{3}{7\times 25^{k-1}},\biggl[ \frac{3}{7\times 7\times 25^{k-1}},\frac{3}{5\times 7\times 25^{k-1}}\biggr],u\biggr) \biggr\} , \end{aligned}\\ D(\mathfrak{e},f,u)=\min \begin{Bmatrix} \mathcal{F}_{d_{q}}\biggl( \frac{3}{35\times 25^{m-1}}, \frac{3}{7\times 25^{k-1}},u\biggr), \mathcal{F}_{d_{q}}\biggl(\frac{3}{35\times 25^{m-1}}, \frac{3}{175\times 25^{m-1}},u \biggr), \\ \mathcal{F}_{d_{q}}\biggl(\frac{3}{7\times 25^{k-1}}, \frac{3}{35\times 25^{k-1}},u \biggr)\end{Bmatrix} , \\ \begin{aligned} D(\mathfrak{e},f,u) ={}&\min \biggl\{ \frac{35\times 25^{m-1}u}{35\times 25^{m-1}u+3+30\times 25^{m-k}}, \frac{175\times 25^{m-1}u}{175\times 25^{m-1}u+21}, \\ &{}\frac{35\times 25^{k-1}u}{35\times 25^{k-1}u+21}\biggr\} \\ ={}&\frac{35\times 25^{m-1}u}{35\times 25^{m-1}u+3+30\times 25^{m-k}}, \end{aligned}\\ \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+15+210\times 25^{m-k}} \geq \sqrt{ \frac{35\times 25^{m-1}u}{35\times 25^{m-1}u+3+30\times 25^{m-k}}}, \\ \min \bigl\{ H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u),H_{d_{q}}( \mathcal{T}f,\mathcal{T}\mathfrak{e},u)\bigr\} \geq \mu \bigl(D( \mathfrak{e},f,u)\bigr). \end{gathered} \end{aligned}$$
(2.33)

Case (ii): For \(k>m\), \(\mathfrak{e}=\frac{3}{35\times 25^{m-1}}\), \(f= \frac{3}{7\times 25^{k-1}}\) and \(u>0\). From (2.31), we have

$$\begin{aligned} H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u) =&\min \biggl\{ \frac{u}{u+\frac{3}{7\times 35\times 25^{m-1}}+\frac{6}{5\times 7\times 25^{k-1}}}, \\ &{} \frac{u}{u+\frac{3}{5\times 35\times 25^{m-1}}+\frac{6}{7\times 7\times 25^{k-1}}} \biggr\} \\ =&\min \biggl\{ \frac{1225\times 25^{k-1}u}{1225\times 25^{k-1}u+15\times 25^{k-m}+210}, \\ &{} \frac{1225\times 25^{k-1}u}{1225\times 25^{k-1}u+21\times 25^{k-m}+150} \biggr\} \\ =& \frac{1225\times 25^{k-1}u}{1225\times 25^{k-1}u+21\times 25^{k-m}+150}. \end{aligned}$$

From (2.32)

$$\begin{aligned} H_{d_{q}}(\mathcal{T}f,\mathcal{T}\mathfrak{e},u) =&\min \biggl\{ \frac{u}{u+\frac{3}{7\times 7\times 25^{k-1}}+\frac{6}{5\times 35\times 25^{m-1}}}, \frac{u}{u+\frac{3}{5\times 7\times 25^{k-1}}+\frac{6}{7\times 35\times 25^{m-1}}} \biggr\} \\ =&\min \biggl\{ \frac{1225\times 25^{k-1}u}{1225\times 25^{k-1}u+75+42\times 25^{k-m}}, \\ & {}\frac{1225\times 25^{k-1}u}{1225\times 25^{k-1}u+105+30\times 25^{k-m}} \biggr\} \\ =& \frac{1225\times 25^{k-1}u}{1225\times 25^{k-1}u+75+42\times 25^{k-m}}. \end{aligned}$$

Also,

$$\begin{aligned}& \min \bigl\{ H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u),H_{d_{q}}(\mathcal{T}f,\mathcal{T}\mathfrak{e},u)\bigr\} \\& \quad =\min \biggl\{ \frac{1225\times 25^{k-1}u}{1225\times 25^{k-1}u+21\times 25^{k-m}+150}, \frac{1225\times 25^{k-1}u}{1225\times 25^{k-1}u+75+42\times 25^{k-m}} \biggr\} \\& \quad = \frac{1225\times 25^{k-1}u}{1225\times 25^{k-1}u+75+42\times 25^{k-m}}. \end{aligned}$$

Now, from (2.33), we have

$$\begin{aligned} D(\mathfrak{e},f,u) =&\min \biggl\{ \mathcal{F}_{d_{q}}\biggl( \frac{3}{35\times 25^{m-1}},\frac{3}{7\times 25^{k-1}},u\biggr), \\ &{}\mathcal{F}_{d_{q}}\biggl(\frac{3}{35\times 25^{m-1}}, \frac{3}{5\times 35\times 25^{m-1}},u\biggr),\\ &{}\mathcal{F}_{d_{q}}\biggl( \frac{3}{7\times 25^{k-1}},\frac{3}{5\times 7\times 25^{k-1}},u\biggr)\biggr\} \\ =&\min \biggl\{ \frac{35\times 25^{k-1}u}{35\times 25^{k-1}u+3\times 25^{k-m}+30},\frac{175\times 25^{m-1}u}{175\times 25^{m-1}u+21},\\ &{} \frac{35\times 25^{k-1}u}{35\times 25^{k-1}u+21}\biggr\} . \end{aligned}$$

Assume that

$$ D(\mathfrak{e},f,u)= \frac{35\times 25^{k-1}u}{35\times 25^{k-1}u+3\times 25^{k-m}+30}. $$

Then,

$$\begin{aligned}& \frac{1225\times 25^{k-1}u}{1225\times 25^{k-1}u+75+42\times 25^{k-m}} \geq \sqrt{ \frac{35\times 25^{k-1}u}{35\times 25^{k-1}u+3\times 25^{k-m}+30}}, \\& \min \bigl\{ H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u),H_{d_{q}}( \mathcal{T}f,\mathcal{T}\mathfrak{e},u)\bigr\} \geq \mu \bigl(D( \mathfrak{e},f,u)\bigr). \end{aligned}$$

Assume that

$$ D(\mathfrak{e},f,u)= \frac{175\times 25^{m-1}u}{175\times 25^{m-1}u+21}. $$

Then,

$$\begin{aligned}& \frac{1225\times 25^{k-1}u}{1225\times 25^{k-1}u+75+42\times 25^{k-m}} \geq \sqrt{\frac{175\times 25^{m-1}u}{175\times 25^{m-1}u+21}}, \\& \min \bigl\{ H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u),H_{d_{q}}( \mathcal{T}f,\mathcal{T}\mathfrak{e},u)\bigr\} \geq \mu \bigl(D( \mathfrak{e},f,u)\bigr). \end{aligned}$$

Case (iii): For \(\mathfrak{e}=0\), \(f=\frac{3}{7\times 25^{k-1}}\), \(u>0\)

$$\begin{aligned} H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u) =&H_{d_{q}} \biggl( \mathcal{T}(0),\mathcal{T}\biggl(\frac{3}{7\times 25^{k-1}}\biggr),u \biggr) \\ =&\min \biggl\{ \mathcal{F}_{d_{q}}\biggl(0,\frac{3}{5\times 7\times 25^{k-1}},u \biggr),\mathcal{F}_{d_{q}}\biggl(0,\frac{3}{7\times 7\times 25^{k-1}},u \biggr)\biggr\} \\ =&\min \biggl\{ \frac{245\times 25^{k-1}u}{245\times 25^{k-1}u+42}, \frac{245\times 25^{k-1}u}{245\times 25^{k-1}u+30}\biggr\} \\ =&\frac{245\times 25^{k-1}u}{245\times 25^{k-1}u+42}. \end{aligned}$$

Also,

$$\begin{aligned} H_{d_{q}}(\mathcal{T}f,\mathcal{T}\mathfrak{e},u) =&H_{d_{q}} \biggl( \mathcal{T}\biggl(\frac{3}{7\times 25^{k-1}}\biggr),\mathcal{T}(0),u \biggr) \\ =&H_{d_{q}} \biggl\{ \biggl[\frac{3}{7\times 7\times 25^{k-1}}, \frac{3}{5\times 7\times 25^{k-1}}\biggr],[0,0],u \biggr\} \\ =&\min \biggl\{ \mathcal{F}_{d_{q}}\biggl( \frac{3}{7\times 7\times 25^{k-1}},0,u \biggr),\mathcal{F}_{d_{q}}\biggl(\frac{3}{5\times 7\times 25^{k-1}},0,u \biggr) \biggr\} \\ =&\min \biggl\{ \frac{49\times 25^{k-1}u}{49\times 25^{k-1}u+3}, \frac{35\times 25^{k-1}u}{35\times 25^{k-1}u+3} \biggr\} \\ =&\min \biggl\{ \frac{245\times 25^{k-1}u}{245\times 25^{k-1}u+15}, \frac{245\times 25^{k-1}u}{245\times 25^{k-1}u+21} \biggr\} \\ =&\frac{245\times 25^{k-1}u}{245\times 25^{k-1}u+21}. \end{aligned}$$

Now, we simplify the left-hand side of inequality (i).

$$\begin{aligned} \min \bigl\{ H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u),H_{d_{q}}( \mathcal{T}f,\mathcal{T}\mathfrak{e},u)\bigr\} =&\min \biggl\{ \frac{245\times 25^{k-1}u}{245\times 25^{k-1}u+42}, \frac{245\times 25^{k-1}u}{245\times 25^{k-1}u+21}\biggr\} \\ =&\frac{245\times 25^{k-1}u}{245\times 25^{k-1}u+42}. \end{aligned}$$

Also,

$$\begin{aligned} D(\mathfrak{e},f,u) =&\min \biggl\{ \mathcal{F}_{d_{q}}\biggl(0, \frac{3}{7\times 25^{k-1}},u\biggr),\mathcal{F}_{d_{q}}(0,0,u),\\ &{} \mathcal{F}_{d_{q}}\biggl( \frac{3}{7\times 25^{k-1}},\frac{3}{5\times 7\times 25^{k-1}},u \biggr)\biggr\} \\ =&\min \biggl\{ \frac{35\times 25^{k-1}u}{35\times 25^{k-1}u+30},1, \frac{35\times 25^{k-1}u}{35\times 25^{k-1}u+21}\biggr\} \\ =&\frac{35\times 25^{k-1}u}{35\times 25^{k-1}u+30}. \end{aligned}$$

Hence,

$$ \frac{245\times 25^{k-1}u}{245\times 25^{k-1}u+42}\geq \mu \biggl( \frac{35\times 25^{k-1}u}{35\times 25^{k-1}u+30}\biggr). $$

Case (iv): \(\mathfrak{e}=\frac{3}{35\times 25^{m-1}}\), \(f=0\)

$$\begin{aligned} H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u) =&H_{d_{q}} \biggl( \mathcal{T}\biggl(\frac{3}{35\times 25^{m-1}}\biggr),\mathcal{T}(0),u \biggr) \\ =&H_{d_{q}} \biggl( \biggl[\frac{3}{7\times 35\times 25^{m-1}}, \frac{3}{5\times 35\times 25^{m-1}}\biggr],[0,0],u \biggr) \\ =&\min \biggl\{ \mathcal{F}_{d_{q}}\biggl( \frac{3}{7\times 35\times 25^{m-1}},0,u \biggr),\mathcal{F}_{d_{q}}\biggl(\frac{3}{5\times 35\times 25^{m-1}},0,u \biggr) \biggr\} \\ =&\min \biggl\{ \frac{245\times 25^{m-1}u}{245\times 25^{m-1}u+3}, \frac{175\times 25^{m-1}u}{175\times 25^{m-1}u+3} \biggr\} \\ =&\min \biggl\{ \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+15}, \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+21} \biggr\} \\ =&\frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+21}, \end{aligned}$$
$$\begin{aligned} H_{d_{q}}(\mathcal{T}f,\mathcal{T}\mathfrak{e},u) =&H_{d_{q}} \biggl( \mathcal{T}(0),\mathcal{T}\biggl(\frac{3}{35\times 25^{m-1}}\biggr),u \biggr) \\ =&H_{d_{q}} \biggl( [0,0],\biggl[\frac{3}{7\times 35\times 25^{m-1}}, \frac{3}{5\times 35\times 25^{m-1}}\biggr],u \biggr) \\ =&\min \biggl\{ \mathcal{F}_{d_{q}}\biggl(0, \frac{3}{5\times 35\times 25^{m-1}},u \biggr),\mathcal{F}_{d_{q}}\biggl(0,\frac{3}{7\times 35\times 25^{m-1}},u \biggr) \biggr\} \\ =&\min \biggl\{ \frac{175\times 25^{m-1}u}{175\times 25^{m-1}u+6}, \frac{245\times 25^{m-1}u}{245\times 25^{m-1}u+6} \biggr\} \\ =&\min \biggl\{ \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+42}, \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+30} \biggr\} \\ =&\frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+42}. \end{aligned}$$

Now, we simplify the left-hand side of inequality (i).

$$\begin{aligned}& \min \bigl\{ H_{d_{q}}(\mathcal{T}\mathfrak{e},\mathcal{T}f,u),H_{d_{q}}( \mathcal{T}f,\mathcal{T}\mathfrak{e},u)\bigr\} \\& \quad =\min \biggl\{ \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+21}, \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+42} \biggr\} \\& \quad =\frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+42}. \end{aligned}$$

Also,

$$\begin{aligned} D(\mathfrak{e},f,u) =&\min \biggl\{ \mathcal{F}_{d_{q}}\biggl( \frac{3}{35\times 25^{m-1}},0,u\biggr),\mathcal{F}_{d_{q}}\biggl( \frac{3}{35\times 25^{m-1}}, \frac{3}{5\times 35\times 25^{m-1}},u\biggr), \\ &\mathcal{F}_{d_{q}}(0,0,u)\biggr\} \\ =&\min \biggl\{ \frac{175\times 25^{m-1}u}{175\times 25^{m-1}u+15}, \frac{175\times 25^{m-1}u}{175\times 25^{m-1}u+21},1 \biggr\} \\ =&\frac{175\times 25^{m-1}u}{175\times 25^{m-1}u+21}. \end{aligned}$$

Hence,

$$\begin{aligned} \frac{1225\times 25^{m-1}u}{1225\times 25^{m-1}u+42} \geq &\sqrt{ \frac{175\times 25^{m-1}u}{175\times 25^{m-1}u+21}} \\ =&\mu \biggl(\frac{175\times 25^{m-1}u}{175\times 25^{m-1}u+21}\biggr). \end{aligned}$$

Case (v) The contraction is trivially held for \(\mathfrak{e}=0\) and \(f=0\). Now,

$$\begin{aligned} & \underset{p=0}{\overset{k}{\circledast }}\min \biggl\{ \mu ^{p} \biggl( \mathcal{F}_{d_{q}}\biggl(\mathfrak{e}_{1}, \mathfrak{e}_{\circ },\frac{1}{2^{p+1}}\biggr)\biggr), \mu ^{p}\biggl(\mathcal{F}_{d_{q}}\biggl( \mathfrak{e}_{\circ },\mathfrak{e}_{1}, \frac{1}{2^{p+1}}\biggr)\biggr)\biggr\} \\ &\quad= \underset{p=0}{\overset{k}{\circledast }}\min \biggl\{ \mu ^{p} \biggl( \mathcal{F}_{d_{q}}\biggl(\frac{3}{35}, \frac{3}{7},\frac{1}{2^{p+1}}\biggr)\biggr),\mu ^{p} \biggl( \mathcal{F}_{d_{q}}\biggl(\frac{3}{7}, \frac{3}{35},\frac{1}{2^{p+1}}\biggr)\biggr)\biggr\} \\ &\quad= \underset{p=0}{\overset{k}{\circledast }}\min \biggl\{ \mu ^{p} \biggl( \frac{\frac{1}{2^{p+1}}}{\frac{1}{2^{p+1}}+\frac{3}{35}+\frac{6}{7}}\biggr),\mu ^{p}\biggl( \frac{\frac{1}{2^{p+1}}}{\frac{1}{2^{p+1}}+\frac{3}{7}+\frac{6}{35}}\biggr)\biggr\} \\ &\quad= \underset{p=0}{\overset{k}{\circledast }}\min \biggl\{ \mu ^{p} \biggl( \frac{35}{35+3\times 2^{p+1}+30\times 2^{p+1}}\biggr),\mu ^{p}\biggl( \frac{35}{35+15\times 2^{p+1}+6\times 2^{p+1}}\biggr)\biggr\} \\ &\quad= \min \biggl\{ \biggl(\frac{35}{101}\biggr),\biggl(\frac{35}{77} \biggr)\biggr\} \circledast \min \biggl\{ \mu \biggl( \frac{35}{167}\biggr), \mu \biggl(\frac{35}{119}\biggr)\biggr\} \circledast \biggl\{ \mu ^{2}\biggl(\frac{35}{299}\biggr), \mu ^{2}\biggl( \frac{35}{203}\biggr)\biggr\} \\ &\qquad{}\circledast \cdots\circledast\min \biggl\{ \mu ^{k}\biggl(\frac{35}{35+3\times 2^{k+1}+30\times 2^{k+1}}\biggr), \mu ^{k}\biggl(\frac{35}{35+15\times 2^{k+1}+6\times 2^{k+1}}\biggr)\biggr\} \\ &\quad= \frac{35}{101}\circledast \mu \biggl(\frac{35}{167}\biggr) \circledast \mu ^{2}\biggl( \frac{35}{299}\biggr)\circledast \cdots\circledast \mu ^{k}\biggl( \frac{35}{35+3\times 2^{k+1}+30\times 2^{k+1}}\biggr)= \frac{35}{101} \\ &\quad> \frac{1}{4}=1-\frac{3}{4}=1-r. \end{aligned}$$

Hence, all the constraints of Theorem 2.1 are satisfied. Hence, S and \(\mathcal{T}\) have a common fixed point and it is 0.

Remark 2.3

By taking six proper subsets of \(D(\mathfrak{e},f,u)\) instead of \(D(\mathfrak{e},f,u)\), we can obtain six new theorems as corollaries of Theorem 2.1.

Remark 2.4

Fixed-point results in right K-sequentially quasimetric spaces can be obtained in a similar way.

Availability of data and materials

No data were used to support this study.

References

  1. Aggarwal, S., Uddin, I., Nieto, J.J.: A fixed-point theorem for monotone nearly asymptotically nonexpansive mappings. J. Fixed Point Theory Appl. 21, Article ID 91 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alaca, C.: Fixed point results for mappings satisfying a general contractive condition of operator type in dislocated fuzzy quasi-metric spaces. J. Comput. Anal. Appl. 12(1), 361–368 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Altun, I., Arifi, N.A., Jleli, M., Lashin, A., Samet, B.: A new approach for the approximations of solutions to a common fixed point problem in metric fixed point theory. J. Funct. Spaces 2016, Article ID 6759320 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Altun, I., Simsek, H.: Some fixed-point theorems on ordered metric spaces and application. Fixed Point Theory Appl. 2010, Article ID 621469 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arshad, M., Shoaib, A., Beg, I.: Fixed point of a pair of contractive dominated mappings on a closed ball in an ordered dislocated metric space. Fixed Point Theory Appl. 2013, Article ID 115 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aubin, J.P.: Mathematical Methods of Games and Economic Theory. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  7. Aydi, H., Bota, M.F., Karapinar, E., Mitrović, S.: Fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, Article ID 88 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhaskar, T.G., Laskhmikantham, V.: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65(7), 1379–1393 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bohnenblust, S., Karlin, S.: Contributions to the Theory of Games. Princeton University Press, Princeton (1950)

    MATH  Google Scholar 

  10. Carl, S., Heikkila, S.: Fixed Point Theory in Ordered Sets and Applications: From Differential and Integral Equations to Game Theory. Springer, New York (2010)

    MATH  Google Scholar 

  11. Castro-Company, F., Romaguera, S., Tirado, P.: The bicompletion of fuzzy quasi-metric spaces. Fuzzy Sets Syst. 166(1), 56–64 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27, 385–389 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gregori, V., Morillas, S., Roig, B.: Fuzzy quasi-metrics for the Sorgenfrey line. Fuzzy Sets Syst. 222, 98–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gregori, V., Romaguera, S.: Fuzzy quasi-metric spaces. Appl. Gen. Topol. 5, 129–136 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harjani, J., Sadarangani, K.: Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations. Nonlinear Anal. 72(3), 1188–1197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hitzler, P., Seda, A.K.: Dislocated topologies. J. Electr. Eng. 51(12/s), 3–7 (2000)

    MATH  Google Scholar 

  17. Kamal, A., Abd-Elal, A.M.: On fixed-point findings for diverse contractions in b dislocated-multiplicative metric spaces. J. Math. 2021, Article ID 4762281 (2021)

    Article  MathSciNet  Google Scholar 

  18. Kramosil, I., Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetica 11, 326–334 (1975)

    MathSciNet  MATH  Google Scholar 

  19. Laadjel, A., Nieto, J.J., Ouahab, A., Rodríguez-López, R.: Multivalued and random version of Perov fixed point theorem in generalized gauge spaces. Random Oper. Stoch. Equ. 30(1), 1–19 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, J.L.: Several extensions of the Abian-Brown fixed point theorem and their applications to extended and generalized Nash equalibria on chain-complete posets. J. Math. Anal. Appl. 409, 1084–1094 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Poovaragavan, D., Jeyaraman, M.: Common fixed point theorems in right complete dislocated quasi-G-fuzzy metric spaces. South East Asian J. Math. Math. Sci. 18(1), 235–246 (2022)

    MathSciNet  MATH  Google Scholar 

  22. Rakić, D., Došenović, T., Mitrović, Z.D., de la Sen, M., Radenović, S.: Some fixed point theorems of Cirić type in fuzzy metric spaces. Mathematics 8(2), 297 (2020). https://doi.org/10.3390/math8020297

    Article  Google Scholar 

  23. Rakić, D., Mukheimer, A., Došenović, T., Mitrovi ć, Z.D., Radenović, S.: On some new fixed point results in fuzzy b-metric spaces. J. Inequal. Appl. 2020, 99 (2020). https://doi.org/10.1186/s13660-020-02371-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Ran, A.C.M., Reurings, M.C.B.: A fixed point theorem in partially ordered sets and some applications to metrix equations. Proc. Am. Math. Soc. 132(5), 1435–1443 (2004)

    Article  MATH  Google Scholar 

  25. Rasham, T., Marino, G., Shoaib, A.: Fixed points for a pair of F-dominated contractive mappings in rectangular b-metric spaces with graph. Mathematics 7(10), 884 (2019). https://doi.org/10.3390/math7100884

    Article  Google Scholar 

  26. Rasham, T., Shoaib, A., Alamri, B.A.S., Arshad, M.: Multivalued fixed point results for new generalized F-dominated contractive mappings on dislocated metric space with application. J. Funct. Spaces 2018, Article ID 4808764 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Rasham, T., Shoaib, A., Alamri, B.A.S., Arshad, M.: Common fixed point results for two families of multivalued A–dominated contractive mappings on closed ball with applications. Open Math. 17, 1350–1360 (2019)

    Article  MathSciNet  Google Scholar 

  28. Rasham, T., Shoaib, A., Hussain, N., Alamri, B.A.S., Arshad, M.: Multivalued fixed point results in dislocated b-metric spaces with application to the system of nonlinear integral equations. Symmetry 11(1), 40 (2019). https://doi.org/10.3390/sym11010040

    Article  MATH  Google Scholar 

  29. Rasham, T., Shoaib, A., Hussain, N., Arshad, M., Khan, S.U.: Common fixed point results for new Ciric-type rational multivalued F-contraction with an application. J. Fixed Point Theory Appl. 20(1), 45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rasham, T., Shoaib, A., Marino, G., Alamri, B.A.S., Arshad, M.: Sufficient conditions to solve two systems of integral equations via fixed point results. J. Inequal. Appl. 2019, 182 (2019). https://doi.org/10.1186/s13660-019-2130-7

    Article  MathSciNet  MATH  Google Scholar 

  31. Rodríguez-López, J., Romaguera, S.: The Hausdorff fuzzy metric on compact sets. Fuzzy Sets Syst. 147, 273–283 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rodríguez-López, J., Romaguera, S., Sánchez-Álvarez, J.M.: The Hausdorff fuzzy quasi-metric. Fuzzy Sets Syst. 161(8), 1078–1096 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shoaib, A.: α-η dominated mappings and related common fixed point results in closed ball. J. Concr. Appl. Math. 13(1–2), 152–170 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Shoaib, A., Arshad, M., Kutbi, M.A.: Common fixed points of a pair of Hardy Rogers type mappings on a closed ball in ordered partial metric spaces. J. Comput. Anal. Appl. 17(2), 255–264 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Shoaib, A., Arshad, M., Rasham, T., Abbas, M.: Unique fixed points results on closed ball for dislocated quasi-G-metric spaces. Trans. A. Razmadze Math. Inst. 117, 221–230 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shoaib, A., Azam, A., Arshad, M., Shahzad, A.: Fixed point results for the multivalued mapping on closed ball in dislocated fuzzy metric space. J. Math. Anal. 8(2), 98–106 (2017)

    MathSciNet  Google Scholar 

  37. Shoaib, A., Azam, A., Shahzad, A.: Common fixed point results for the family of multivalued mappings satisfying contraction on a sequence in Hausdorff fuzzy metric space. J. Comput. Anal. Appl. 24(4), 692–699 (2018)

    MathSciNet  Google Scholar 

  38. Shoaib, A., Hussain, A., Arshad, M., Azam, A.: Fixed point results for \(\alpha _{\ast }\)-ψ-Ciric type multivalued mappings on an intersection of a closed ball and a sequence with graph. J. Math. Anal. 7(3), 41–50 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Shoaib, A., Khan, I.S., Hassan, Z.: Generalized contraction involving an open ball and common fixed point of multivalued mappings in ordered dislocated quasimetric spaces. Filomat 34(2), 323–338 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shoaib, A., Kumam, P., Shahzad, A., Phiangsungnoen, S., Mahmood, Q.: Fixed point results for fuzzy mappings in a b-metric space. Fixed Point Theory Appl. 2018, Article ID 2 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shoaib, A., Mustafa, S., Shahzad, A.: Common fixed point of multivalued mappings in ordered dislocated quasi G-metric spaces. Punjab Univ. J. Math. 52(10), 1–23 (2020)

    MathSciNet  Google Scholar 

  42. Vetro, C.: Fixed points in a weak non-Archemedean fuzzy metric spaces. Fuzzy Sets Syst. 162, 84–90 (2011)

    Article  MATH  Google Scholar 

  43. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Mathematics and Statistics, Riphah International University, Islamabad, Pakistan for their research support.

Funding

No funds have been taken for this project.

Author information

Authors and Affiliations

Authors

Contributions

The first author proposed the idea. The second author wrote the initial draft. The first author corrected and approved the final manuscript.

Corresponding author

Correspondence to Abdullah Shoaib.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Abbreviations

Not applicable.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoaib, A., Khaliq, K. Fixed-point results for generalized contraction in K-sequentially complete ordered dislocated fuzzy quasimetric spaces. Fixed Point Theory Algorithms Sci Eng 2022, 27 (2022). https://doi.org/10.1186/s13663-022-00737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13663-022-00737-4

MSC

Keywords