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1. Introduction and Preliminaries

In the sequel, (E, τ) will be a Hausdorff locally convex topological vector space. A family
{pα : α ∈ I} of seminorms defined on E is said to be an associated family of seminorms for
τ if the family {γU : γ > 0}, where U =

⋂n
i=1Uαi and Uαi = {x : pαi(x) < 1}, forms a base of

neighborhoods of zero for τ . A family {pα : α ∈ I} of seminorms defined on E is called an
augmented associated family for τ if {pα : α ∈ I} is an associated family with property that
the seminorm max{pα, pβ} ∈ {pα : α ∈ I} for any α, β ∈ I. The associated and augmented
associated families of seminorms will be denoted by A(τ) and A∗(τ), respectively. It is well
known that given a locally convex space (E, τ), there always exists a family {pα : α ∈ I} of
seminorms defined on E such that {pα : α ∈ I} = A∗(τ) (see [1, page 203]).

The following construction will be crucial. Suppose thatM is a τ-bounded subset of E.
For this set M we can select a number λα > 0 for each α ∈ I such that M ⊂ λαUα, where Uα =
{x : pα(x) ≤ 1}. Clearly, B =

⋂
αλαUα is τ-bounded, τ-closed, absolutely convex and contains

M. The linear span EB of B in E is
⋃∞

n=1nB. The Minkowski functional of B is a norm ‖ · ‖B on
EB. Thus (EB, ‖ · ‖B) is a normed space with B as its closed unit ball and supα pα(x/λα) = ‖x‖B
for each x ∈ EB (for details see [1–3]).
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Let M be a subset of a locally convex space (E, τ). Let I, J : M → M be mappings. A
mapping T : M → M is called (I, J)-Lipschitz if there exists k ≥ 0 such that pα(Tx − Ty) ≤
kpα(Ix − Jy) for any x, y ∈ M and for all pα ∈ A∗(τ). If k < 1 (resp., k = 1), then T is
called an (I, J)-contraction (resp., (I, J)-nonexpansive). A point x ∈ M is a common fixed
(coincidence) point of I and T if x = Ix = Tx(Ix = Tx). The set of coincidence points of I and
T is denoted by C(I, T), and the set of fixed points of T is denoted by F(T). The pair {I, T} is
called:

(1) commuting if TIx = ITx for all x ∈ M;

(2) R-weakly commuting if for all x ∈ M and for all pα ∈ A∗(τ), there exists R > 0
such that pα(ITx − TIx) ≤ Rpα(Ix − Tx). If R = 1, then the maps are called weakly
commuting [4];

(3) compatible [5] if for all pα ∈ A∗(τ), limnpα(TIxn − ITxn) = 0 whenever {xn} is a
sequence such that limnTxn = limnIxn = t for some t inM;

(4) weakly compatible if they commute at their coincidence points, that is, ITx = TIx
whenever Ix = Tx.

Suppose that M is q-starshaped with q ∈ F(I) and is both T - and I-invariant. Then T
and I are called:

(5) R-subcommuting on M if for all x ∈ M and for all pα ∈ A∗(τ), there exists a real
number R > 0 such that pα(ITx − TIx) ≤ (R/k)pα(((1 − k)q + kTx) − Ix) for each
k ∈ (0, 1). If R = 1, then the maps are called 1-subcommuting [6];

(6) R-subweakly commuting on M (see [7]) if for all x ∈ M and for all pα ∈ A∗(τ),
there exists a real number R > 0 such that pα(ITx − TIx) ≤ Rdpα(Ix, [q, Tx]), where
[q, x] = {(1 − k)q + kx : 0 ≤ k ≤ 1} and dpα(u,M) = inf{pα(x − u) : x ∈ M};

(7) Cq-commuting [8, 9] if ITx = TIx for all x ∈ Cq(I, T), where Cq(I, T) = ∪{C(I, Tk) :
0 ≤ k ≤ 1} and Tkx = (1 − k)q + kTx.

If u ∈ E,M ⊆ E, then we define the set, PM(u), of best M-approximations to u as
PM(u) = {y ∈ M : pα(y − u) = dpα(u,M), for all pα ∈ A∗(τ)}. A mapping T : M → E is
called demiclosed at 0 if {xα} converges weakly to x and {Txα} converges to 0, then we have
Tx = 0. A locally convex space E satisfies Opial’s condition if for every net {xβ} in E weakly
convergent to x ∈ X, the inequality

lim inf
β→∞

pα
(
xβ − x

)
< lim inf

β→∞
pα
(
xβ − y

)
(1.1)

holds for all y /=x and pα ∈ A∗(τ)}.
In 1963, Meinardus [10] employed the Schauder fixed point theorem to prove a result

regarding invariant approximation. Singh [11], Sahab et al. [12], and Jungck and Sessa
[13] proved similar results in best approximation theory. Recently, Hussain and Khan [6]
have proved more general invariant approximation results for 1-subcommuting maps which
extend the work of Jungck and Sessa [13] and Al-Thagafi [14] to locally convex spaces. More
recently, with the introduction of noncommuting maps to this area, Pant [15], Pathak et al.
[16], Hussain and Jungck [7], and Jungck and Hussain [9] further extended and improved
the above-mentioned results; details on the subject may be found in [17, 18]. For applications
of fixed point results of nonlinear mappings in simultaneous best approximation theory and
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variational inequalities, we refer the reader to [19–21]. Fixed point theory of nonexpansive
and noncommuting mappings is very rich in Banach spaces and metric spaces [13–17].
However, some partial results have been obtained for these mappings in the setup of locally
convex spaces (see [22] and its references). It is remarked that the generalization of a known
result in Banach space setting to the case of locally convex spaces is neither trivial nor easy
(see, e.g., [2, 22]).

The following general common fixed point result is a consequence of Theorem 3.1 of
Jungck [5], which will be needed in the sequel.

Theorem 1.1. Let (X, d) be a complete metric space, and let T, f, g be selfmaps of X. Suppose that f
and g are continuous, the pairs {T, f} and {T, g} are compatible such that T(X) ⊂ f(X) ∩ g(X). If
there exists r ∈ (0, 1) such that for all x, y ∈ X,

d
(
Tx, Ty

) ≤ r max
{

d
(
fx, gy

)
, d

(
Tx, fx

)
, d

(
Ty, gy

)
,
1
2
[
d
(
fx, Ty

)
+ d

(
Tx, gy

)]
}

, (1.2)

then there is a unique point z in X such that Tz = fz = gz = z.

The aim of this paper is to extend the above well-known result of Jungck to locally
convex spaces and establish general common fixed point theorems for generalized (f, g)-
nonexpansive subcompatible maps in the setting of a locally convex space. We apply our
theorems to derive some results on the existence of common fixed points from the set of best
approximations. We also establish common fixed point and approximation results for the
newly defined class of Banach operator pairs. Our results extend and unify the work of Al-
Thagafi [14], Chen and Li [23], Hussain [24], Hussain and Berinde [25], Hussain and Jungck
[7], Hussain and Khan [6], Hussain and Rhoades [8], Jungck and Sessa [13], Khan and Akbar
[19, 20], Pathak and Hussain [21], Sahab et al. [12], Sahney et al. [26], Singh [11, 27], Tarafdar
[3], and Taylor [28].

2. Subcompatible Maps in Locally Convex Spaces

Recently, Khan et al. [29] introduced the class of subcompatible mappings as follows:

Definition 2.1. Let M be a q-starshaped subset of a normed space E. For the selfmaps I and T
of M with q ∈ F(I), we define Sq(I, T) := ∪{S(I, Tk) : 0 ≤ k ≤ 1}, where Tkx = (1 − k)q + kTx
and S(I, Tk) = {{xn} ⊂ M : limnIxn = limnTkxn = t ∈ M}. Now I and T are subcompatible if
limn‖ITxn − TIxn‖ = 0 for all sequences {xn} ∈ Sq(I, T).

We can extend this definition to a locally convex space by replacing the norm with a
family of seminorms.

Clearly, subcompatiblemaps are compatible but the converse does not hold, in general,
as the following example shows.

Example 2.2 (see [29]). Let X = R with usual norm and M = [1,∞). Let I(x) = 2x − 1 and
T(x) = x2, for all x ∈ M. Let q = 1. ThenM is q-starshaped with Iq = q. Note that I and T are
compatible. For any sequence {xn} in M with limnxn = 2, we have, limnIxn = limnT2/3xn =
3 ∈ M. However, limn‖ITxn − TIxn‖/= 0. Thus I and T are not subcompatible maps.
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Note that R-subweakly commuting and R-subcommuting maps are subcompatible.
The following simple example reveals that the converse is not true, in general.

Example 2.3 (see [29]). LetX = Rwith usual norm andM = [0,∞). Let I(x) = x/2 if 0 ≤ x < 1
and Ix = x if x ≥ 1, and T(x) = 1/2 if 0 ≤ x < 1 and Tx = x2 if x ≥ 1. Then M is 1-starshaped
with I1 = 1 and Sq(I, T) = {{xn} : 1 ≤ xn < ∞}. Note that I and T are subcompatible but not
R-weakly commuting for all R > 0. Thus I and T are neither R-subweakly commuting nor
R-subcommuting maps.

We observe in the following example that theweak commutativity of a pair of selfmaps
on a metric space depends on the choice of the metric; this is also true for compatibility, R-
weak commutativity, and other variants of commutativity of maps.

Example 2.4 (see [30]). Let X = R with usual metric and M = [0,∞). Let I(x) = 1 + x and
T(x) = 2+x2. Then |ITx−TIx| = 2x and |Ix−Tx| = |x2−x+1|. Thus the pair (I, T) is not weakly
commuting on M with respect to usual metric. But if X is endowed with the discrete metric
d, then d(ITx, TIx) = 1 = d(Ix, Tx) for x > 1. Thus the pair (I, T) is weakly commuting on
M with respect to discrete metric.

Next we establish a positive result in this direction in the context of linear topologies
utilizing Minkowski functional; it extends [6, Lemma2.1].

Lemma 2.5. Let I and T be compatible selfmaps of a τ-bounded subset M of a Hausdorff locally
convex space (E, τ). Then I and T are compatible on M with respect to ‖ · ‖B.

Proof. By hypothesis, limn→∞pα(ITxn − TIxn) = 0 for each pα ∈ A∗(τ) whenever
limn→∞pα(Txn − t) = 0 = limn→∞pα(Ixn − t) for some t ∈ M. Taking supremum on both
sides, we get

sup
α

lim
n→∞

pα

(
ITxn − TIxn

λα

)

= sup
α

(
0
λα

)

, (2.1)

whenever

sup
α

lim
n→∞

pα

(
Txn − t

λα

)

= sup
α

(
0
λα

)

= sup
α

lim
n→∞

pα

(
Ixn − t

λα

)

. (2.2)

This implies that

lim
n→∞

sup
α

pα

(
ITxn − TIxn

λα

)

= 0, (2.3)

whenever

lim
n→∞

sup
α

pα

(
Txn − t

λα

)

= 0 = lim
n→∞

sup
α

pα

(
Ixn − t

λα

)

. (2.4)

Hence limn→∞‖ITxn − TIxn‖B = 0, whenever limn→∞‖Txn − t‖B = 0 = limn→∞‖Ixn − t‖B as
desired.
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There are plenty of spaces which are not normable (see [31, page 113]). So it is natural
and essential to consider fixed point and approximation results in the context of a locally
convex space. An application of Lemma 2.5 provides the following general common fixed
point result.

Theorem 2.6. Let M be a nonempty τ-bounded, τ-complete subset of a Hausdorff locally convex
space (E, τ) and let T, f, and g be selfmaps of M. Suppose that f and g are nonexpansive, the pairs
{T, f} and {T, g} are compatible such that T(M) ⊂ f(M)∩g(M). If there exists r ∈ (0, 1) such that
for all x, y ∈ M, and for all pα ∈ A∗(τ)

pα
(
Tx − Ty

)≤rmax
{

pα
(
fx − gy

)
, pα

(
Tx − fx

)
, pα

(
Ty − gy

)
,
1
2
[
pα
(
fx−Ty)+ pα

(
Tx−gy)]

}

,

(2.5)

then there is a unique point z inM such that Tz = fz = gz = z.

Proof. Since the norm topology on EB has a base of neighbourhoods of 0 consisting of τ-
closed sets and M is τ-sequentially complete, therefore M is ‖ · ‖B- sequentially complete in
(EB, ‖ · ‖B); see [3, the proof of Theorem1.2]. By Lemma 2.5, the pairs {T, f} and {T, g} are
‖ · ‖B−compatible maps ofM. From (2.5)we obtain for any x, y ∈ M,

sup
α

pα

(
Tx − Ty

λα

)

≤ r max
{

sup
α

pα

(
fx − gy

λα

)

, sup
α

pα

(
Tx − fx

λα

)

, sup
α

pα

(
Ty − gy

λα

)

,

1
2

[

sup
α

pα

(
fx − Ty

λα

)

+ sup
α

pα

(
Tx − gy

λα

)]}

.

(2.6)

Thus

∥
∥Tx − Ty

∥
∥
B ≤ rmax

{
∥
∥fx − gy

∥
∥
B,
∥
∥Tx − fx

∥
∥
B,
∥
∥Ty − gy

∥
∥
B,

1
2
[∥
∥fx − Ty

∥
∥
B +

∥
∥Tx − gy

∥
∥
B

]
}

.

(2.7)

As f and g are nonexpansive on τ-bounded set M, f, and g are also nonexpansive with
respect to ‖ · ‖B and hence continuous (cf. [6]). A comparison of our hypothesis with that of
Theorem 1.1 tells that we can apply Theorem 1.1 to M as a subset of (EB, ‖ · ‖B) to conclude
that there exists a unique z inM such that Tz = fz = gz = z.

We now prove the main result of this section.

Theorem 2.7. Let M be a nonempty τ-bounded, τ-sequentially complete, q-starshaped subset of a
Hausdorff locally convex space (E, τ) and let T, f, and g be selfmaps of M. Suppose that f and g are
affine and nonexpansive with q ∈ F(f) ∩ F(g), and T(M) ⊂ f(M) ∩ g(M). If the pairs {T, f} and
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{T, g} are subcompatible and, for all x, y ∈ M and for all pα ∈ A∗(τ),

pα
(
Tx − Ty

) ≤ max
{

pα
(
fx − gy

)
, dpα

(
fx,

[
Tx, q

])
, dpα

(
gy,

[
Ty, q

])
,

1
2
[
dpα

(
fx,

[
Ty, q

])
+ dpα

(
gy,

[
Tx, q

])]
}

,

(2.8)

then F(T) ∩ F(f) ∩ F(g)/= ∅ provided that one of the following conditions holds:

(i) cl(T(M)) is τ-sequentially compact, and T is continuous (cl stands for closure);

(ii) M is τ-sequentially compact, and T is continuous;

(iii) M is weakly compact in (E, τ), and f − T is demiclosed at 0.

Proof. Define Tn : M → M by

Tnx = (1 − kn)q + knTx (2.9)

for all x ∈ M and a fixed sequence of real numbers kn (0 < kn < 1) converging to 1. Then,
each Tn is a selfmap of M and for each n ≥ 1, Tn(M) ⊂ f(M) ∩ g(M) since f and g are affine
and T(M) ⊂ f(M) ∩ g(M). As f is affine and the pair {T, f} is subcompatible, so for any
{xm} ⊂ M with limmfxm = limmTnxm = t ∈ M, we have

lim
m

pα
(
Tnfxm − fTnxm

)
= knlim

m
pα

(
Tfxm − fTxm

)

= 0.
(2.10)

Thus the pair {Tn, f} is compatible on M for each n. Similarly, the pair {Tn, g} is compatible
for each n ≥ 1.

Also by (2.8),

pα
(
Tnx − Tny

)
= knpα

(
Tx − Ty

)

≤ knmax
{

pα
(
fx − gy

)
, dpα

(
fx,

[
Tx, q

])
, dpα

(
gy,

[
Ty, q

])
,

1
2
[
dpα

(
fx,

[
Ty, q

])
+ dpα

(
gy,

[
Tx, q

])]
}

≤ knmax
{

pα
(
fx − gy

)
, pα

(
fx − Tnx

)
, pα

(
gy − Tny

)
,

1
2
[
pα
(
fx − Tny

)
+ pα

(
gy − Tnx

)]
}

,

(2.11)

for each x, y ∈ M, pα ∈ A∗(τ), and 0 < kn < 1. By Theorem 2.6, for each n ≥ 1, there exists
xn ∈ M such that xn = fxn = gxn = Tnxn.



Fixed Point Theory and Applications 7

(i) The compactness of cl(T(M)) implies that there exists a subsequence {Txm} of
{Txn} and a z ∈ cl(T(M)) such that Txm → z as m → ∞. Since km → 1, xm = Tmxm =
(1 − km)q + kmTxm also converges to z. Since T , f, and g are continuous, we have z ∈ F(T) ∩
F(f) ∩ F(g). Thus F(T) ∩ F(f) ∩ F(g)/= ∅.

(ii) Proof follows from (i).
(iii) Since M is weakly compact, there is a subsequence {xm} of {xn} converging

weakly to some y ∈ M. But, f and g being affine and continuous are weakly continuous,
and the weak topology is Hausdorff, so we have fy = y = gy. The set M is bounded, so
(f − T)(xm) = (1 − (km)

−1)(xm − q) → 0 as m → ∞. Now the demiclosedness of f − T at 0
guarantees that (f − T)y = 0 and hence F(T) ∩ F(f) ∩ F(g)/= ∅.

Theorem 2.7 extends and improves [14, Theorem2.2], [7, Theorems 2.2-2.3, and
Corollaries 2.4–2.7], [13, Theorem6], and the main results of Tarafdar [3] and Taylor [28](see
also [6, Remarks 2.4]).

Theorem 2.8. Let M be a nonempty τ-bounded, τ-sequentially complete, q-starshaped subset of a
Hausdorff locally convex space (E, τ) and let T, f, and g be selfmaps of M. Suppose that f and g are
affine and nonexpansive with q ∈ F(f) ∩ F(g), and T(M) ⊂ f(M) ∩ g(M). If the pairs {T, f} and
{T, g} are subcompatible and T is (f, g)-nonexpansive, then F(T) ∩ F(f) ∩ F(g)/= ∅, provided that
one of the following conditions holds

(i) cl(T(M)) is τ-sequentially compact;

(ii) M is τ-sequentially compact;

(iii) M is weakly compact in (E, τ), f − T is demiclosed at 0.

(iv) M is weakly compact in an Opial space (E, τ).

Proof. (i)–(iii) follow from Theorem 2.7.
(iv) As in (iii) we have fy = y = gy and ‖fxm − Txm‖ → 0 as m → ∞. If fy /= Ty,

then by the Opial’s condition of E and (f, g)-nonexpansiveness of T we get,

lim inf
n→∞

pα
(
fxm − gy

)
= lim inf

n→∞
pα

(
fxm − fy

)
< lim inf

n→∞
pα

(
fxm − Ty

)

≤ lim inf
n→∞

pα
(
fxm − Txm

)
+ lim inf

n→∞
pα

(
Txm − Ty

)

= lim inf
n→∞

pα
(
Txm − Ty

) ≤ lim inf
n→∞

pα
(
fxm − gy

)
,

(2.12)

which is a contradiction. Thus fy = Ty and hence F(T) ∩ F(f) ∩ F(g)/= ∅.

As 1-subcommuting maps are subcompatible, so by Theorem 2.8, we obtain the
following recent result of Hussain and Khan [6] without the surjectivity of f . Note that a
continuous and affine map is weakly continuous, so the weak continuity of f is not required
as well.

Corollary 2.9 ([6, Theorem2.2]). Let M be a nonempty τ-bounded, τ-sequentially complete, q-
starshaped subset of a Hausdorff locally convex space (E, τ) and let T, f be selfmaps ofM. Suppose that
f is affine and nonexpansive with q ∈ F(f), and T(M) ⊂ f(M). If the pair {T, f} is 1-subcommuting
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and T is f-nonexpansive, then F(T) ∩ F(f)/= ∅, provided that one of the following conditions holds:

(i) cl(T(M) is τ-sequentially compact;

(ii) M is τ-sequentially compact;

(iii) M is weakly compact in (E, τ), f − T is demiclosed at 0.

(iv) M is weakly compact in an Opial space (E, τ).

The following theorem improves and extends the corresponding approximation
results in [6–8, 11–14, 25, 27].

Theorem 2.10. LetM be a nonempty subset of a Hausdorff locally convex space (E, τ) and let f, g, T :
E → E be mappings such that u ∈ F(T) ∩ F(f) ∩ F(g) for some u ∈ E and T(∂M ∩ M) ⊂ M.
Suppose that f and g are affine and nonexpansive on PM(u) with q ∈ F(f) ∩ F(g), PM(u) is τ-
bounded, τ-sequentially complete, q-starshaped and f(PM(u)) = PM(u) = g(PM(u)). If the pairs
(T, f) and (T, g) are subcompatible and, for all x ∈ PM(u) ∪ {u} and pα ∈ A∗(τ),

pα
(
Tx − Ty

) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

pα
(
fx − gu

)
, if y = u,

max
{

p
α

(
fx − gy

)
, dpα

(
fx,

[
q, Tx

])
, dpα

(
gy,

[
q, Ty

])
,

1
2
[
dpα

(
fx,

[
q, Ty

])
+ dpα

(
gy,

[
q, Tx

])]
}

, if y ∈ PM(u),

(2.13)

then PM(u) ∩ F(f) ∩ F(g) ∩ F(T)/= ∅, provided that one of the following conditions holds

(i) cl(T(PM(u))) is τ-sequentially compact, and T is continuous;

(ii) PM(u) is τ-sequentially compact, and T is continuous;

(iii) PM(u) is weakly compact, and (f − T) is demiclosed at 0.

Proof. Let x ∈ PM(u). Then for each pα, pα(x − u) = dpα(u,M). Note that for any k ∈ (0, 1),
pα(ku + (1 − k)x − u) = (1 − k)pα(x − u) < dpα(u,M).

It follows that the line segment {ku + (1 − k)x : 0 < k < 1} and the set M are disjoint.
Thus x is not in the interior ofM and so x ∈ ∂M ∩M. Since T(∂M ∩M) ⊂ M, Tx must be in
M. Also since fx ∈ PM(u), u ∈ F(T) ∩ F(f) ∩ F(g), and T, f, g satisfy (2.13), we have for each
pα,

pα(Tx − u) = pα(Tx − Tu) ≤ pα
(
fx − gu

)
= pα

(
fx − u

)
= dpα(u,M). (2.14)

Thus Tx ∈ PM(u). Consequently, T(PM(u)) ⊂ PM(u) = f(PM(u)) = g(PM(u)). Now
Theorem 2.7 guarantees that PM(u) ∩ F(f) ∩ F(g) ∩ F(T)/= ∅.

Remark 2.11. One can now easily prove on the lines of the proof of the above theorem that the
approximation results are similar to those of Theorems 2.11-2.12 due to Hussain and Jungck
[7] in the settingof a Hausdorff locally convex space.
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We define CI
M(u) = {x ∈ M : Ix ∈ PM(u)} and denote by I0 the class of closed convex

subsets of E containing 0. For M ∈ I0, we define Mu = {x ∈ M : pα(x) ≤ 2pα(u) for each
pα ∈ A∗(τ)}. It is clear that PM(u) ⊂ Mu ∈ I0.

The following result extends [14, Theorem4.1] and [7, Theorem2.14].

Theorem 2.12. Let f, g, T be selfmaps of a Hausdorff locally convex space (E, τ) with u ∈ F(T) ∩
F(f) ∩ F(g) and M ∈ I0 such that T(Mu) ⊂ f(M) ⊂ M = g(M). Suppose that pα(fx − u) =
pα(x−u) and pα(gx−u) = pα(x−u) for all x ∈ Mu and for each pα where clf(M) is compact. Then

(i) PM(u) is nonempty, closed, and convex,

(ii) T(PM(u)) ⊂ f(PM(u)) ⊂ PM(u) = g(PM(u)),

(iii) PM(u) ∩ F(f) ∩ F(g) ∩ F(T)/= ∅ provided f and g are subcompatible, affine, and
nonexpansive onM, and, for some q ∈ PM(u) and for all x, y ∈ PM(u),

pα
(
fx − fy

) ≤ max
{

p
α

(
gx − gy

)
, dpα

(
gx,

[
q, fx

])
, dpα

(
gy,

[
q, fy

])
,

1
2
[
dpα

(
gx,

[
q, fy

])
+ dpα

(
gy,

[
q, fx

])]
}

,

(2.15)

T is continuous, the pairs {T, f} and {T, g} are subcompatible on PM(u) and satisfy for all q ∈
F(f) ∩ F(g),

pα
(
Tx − Ty

) ≤ max
{

p
α

(
fx − gy

)
, dpα

(
fx,

[
q, Tx

])
, dpα

(
gy,

[
q, Ty

])
,

1
2
[
dpα

(
fx,

[
q, Ty

])
+ dpα

(
gy,

[
q, Tx

])]
} (2.16)

for all x, y ∈ PM(u) and for each pα ∈ A∗(τ).

Proof. (i)We follow the arguments used in [7] and [8]. Let r = dpα(u,M) for each pα.
Then there is a minimizing sequence {yn} in M such that limn pα(u − yn) = r. As

cl(f(M)) is compact so {fyn} has a convergent subsequence {fym}with limmfym = x0 (say)
in M. Now by using

pα
(
fx − u

) ≤ pα(x − u) (2.17)

we get for each pα,

r ≤ pα(x0 − u) = lim
m

pα
(
fym − u

) ≤ lim
m

pα
(
ym − u

)
= lim

n
pα

(
yn − u

)
= r. (2.18)

Hence x0 ∈ PM(u). Thus PM(u) is nonempty closed and convex.

(i) Follows from [7, Theorem2.14].

(ii) By Theorem 2.7(i), PM(u)∩F(f)∩F(g)/= ∅, so it follows that there exists q ∈ PM(u)
such that q ∈ F(f) ∩ F(g).Hence (iii) follows from Theorem 2.7(i).
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3. Banach Operator Pair in Locally Convex Spaces

Utilizing similar arguments as above, the following result can be proved which extends
recent common fixed point results due to Hussain and Rhoades [8, Theorem2.1] and Jungck
and Hussain [9, Theorem2.1] to the setup of a Hausdorff locally convex space which is not
necessarily metrizable.

Theorem 3.1. Let M be a τ-bounded subset of a Hausdorff locally convex space (E, τ), and let I and
let T be weakly compatible self-maps of M. Assume that τ − cl(T(M)) ⊂ I(M), τ − cl(T(M)) is
τ-sequentially complete, and T and I satisfy, for all x, y ∈ M, pα ∈ A∗(τ) and for some 0 ≤ k < 1,

pα
(
Tx − Ty

) ≤ k max
{
pα
(
Ix − Iy

)
, pα(Ix − Tx), pα

(
Iy − Ty

)
, pα

(
Ix − Ty

)
, pα

(
Iy − Tx

)}
.

(3.1)

Then F(I) ∩ F(T) is a singleton.

As an application of Theorem 3.1, the analogue of all the results due to Hussain and
Berinde [25], and Hussain and Rhoades [8] can be established for Cq-commuting maps I and
T defined on a τ-bounded subset M of a Hausdorff locally convex space. We leave details to
the reader.

Recently, Chen and Li [23] introduced the class of Banach operator pairs, as a new
class of noncommuting maps and it has been further studied by Hussain [24], Ciric et al.
[32], Khan and Akbar [19, 20], and Pathak and Hussain [21]. The pair (T, f) is called a
Banach operator pair, if the set F(f) is T -invariant, namely, T(F(f)) ⊆ F(f). Obviously,
commuting pair (T, f) is a Banach operator pair but converse is not true, in general; see
[21, 23]. If (T, f) is a Banach operator pair, then (f, T) need not be a Banach operator pair
(cf. [23, Example 1]).

Chen and Li [23] proved the following.

Theorem 3.2 ([23, Theorems 3.2-3.3]). Let M be a q-starshaped subset of a normed space X and
let T , I be self-mappings of M. Suppose that F(I) is q-starshaped and I is continuous on M. If
cl(T(M)) is compact (resp., I is weakly continuous, cl(T(M)) is complete, M is weakly compact,
and either I − T is demiclosed at 0 or X satisfies Opial’s condition), (T, I) is a Banach operator pair,
and T is I-nonexpansive on M, thenM ∩ F(T) ∩ F(I)/= ∅.

In this section, we extend and improve the above-mentioned common fixed point
results of Chen and Li [23] in the setup of a Hausdorff locally convex space.

Lemma 3.3. LetM be a nonempty τ-bounded subset of Hausdorff locally convex space (E, τ), and let
T, f, and g be self-maps ofM. If F(f) ∩ F(g) is nonempty, τ − cl(T(F(f) ∩ F(g))) ⊆ F(f) ∩ F(g),
τ − cl(T(M)) is τ-sequentially complete, and T , f, and g satisfy for all x, y ∈ M and for some
0 ≤ k < 1,

pα
(
Tx − Ty

) ≤ k max
{
pα
(
fx − gy

)
, pα

(
fx − Tx

)
, pα

(
gy − Ty

)
, pα

(
fx − Ty

)
, pα

(
gy − Tx

)}

(3.2)

thenM ∩ F(T) ∩ F(f) ∩ F(g) is singleton.



Fixed Point Theory and Applications 11

Proof. Note that τ − cl(T(F(f) ∩ F(g))) being a subset of τ − cl(T(M)) is τ-sequentially
complete. Further, for all x, y ∈ F(f) ∩ F(g), we have

pα
(
Tx − Ty

) ≤ k max
{
pα
(
fx − gy

)
, pα

(
fx − Tx

)
, pα

(
gy − Ty

)
, pα

(
fx − Ty

)
, pα

(
gy − Tx

)}

= k max
{
pα
(
x − y

)
, pα(x − Tx), pα

(
y − Ty

)
, pα

(
x − Ty

)
, pα

(
y − Tx

)}
.

(3.3)

Hence T is a generalized contraction on F(f)∩F(g) and τ − cl(T(F(f)∩F(g))) ⊆ F(f)∩F(g).
By Theorem 3.1 (with I = identity map), T has a unique fixed point z in F(f) ∩ F(g) and
consequently, F(T) ∩ F(f) ∩ F(g) is singleton.

The following result generalizes [19, Theorem2.3], [24, Theorem2.11], and [21,
Theorem2.2] and improves [14, Theorem2.2] and [13, Theorem6].

Theorem 3.4. Let M be a nonempty τ-bounded subset of Hausdorff locally convex (resp., complete)
space (E, τ) and let T, f, and g be self-maps of M. Suppose that F(f) ∩ F(g) is q-starshaped, τ −
cl(T(F(f)∩F(g))) ⊆ F(f)∩F(g)(resp., τ −wcl(T(F(f)∩F(g))) ⊆ F(f)∩F(g)), τ −cl(T(M)) is
compact (resp., τ −wcl(T(M)) is weakly compact), T is continuous onM (resp., I − T is demiclosed
at 0, where I stands for identity map) and

pα
(
Tx − Ty

) ≤ max
{
pα
(
fx − gy

)
, dpα

(
fx,

[
q, Tx

])
, dpα

(
gy,

[
q, Ty

])
,

dpα

(
gy,

[
q, Tx

])
, dpα

(
fx,

[
q, Ty

])}
.

(3.4)

For all x, y ∈ M, thenM ∩ F(T) ∩ F(f) ∩ F(g)/= ∅.

Proof. Define Tn : F(f)∩F(g) → F(f)∩F(g) by Tnx = (1−kn)q+knTx for all x ∈ F(f)∩F(g)
and a fixed sequence of real numbers kn (0 < kn < 1) converging to 1. Since F(f) ∩ F(g) is
q-starshaped and τ −cl(T(F(f)∩F(g))) ⊆ F(f)∩F(g) (resp., τ −wcl(T(F(f)∩F(g))) ⊆ F(f)∩
F(g)), so τ −cl(Tn(F(f)∩F(g))) ⊆ F(f)∩F(g)) (resp., τ −wcl(Tn(F(f)∩F(g))) ⊆ F(f)∩F(g))
for each n ≥ 1. Also by (3.4),

pα
(
Tnx − Tny

)
= knpα

(
Tx − Ty

)

≤ knmax
{
pα
(
fx − gy

)
, dpα

(
fx,

[
q, Tx

])
,

dpα

(
gy,

[
q, Ty

])
, dpα

(
fx,

[
q, Ty

])
, dpα

(
gy,

[
q, Tx

])}

≤ kn max
{
pα
(
fx − gy

)
, pα

(
fx − Tnx

)
, pα

(
gy − Tny

)
,

pα
(
gy − Tnx

)
, pα

(
fx − Tny

)}
,

(3.5)

for each x, y ∈ F(f) ∩ F(g) and some 0 < kn < 1.
If τ − cl(T(M)) is compact, for each n ∈ N, τ − cl(Tn(M)) is τ-compact and hence

τ-sequentially complete. By Lemma 3.3, for each n ≥ 1, there exists xn ∈ F(f) ∩ F(g) such
that xn = fxn = gxn = Tnxn. The compactness of τ − cl(T(M)) implies that there exists a
subsequence {Txm} of {Txn} such that Txm → z ∈ cl(T(M)) as m → ∞. Since {Txm} is a
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sequence in T(F(f)∩F(g)) and τ−cl(T(F(f)∩F(g))) ⊆ F(f)∩F(g), therefore z ∈ F(f)∩F(g).
Further, xm = Tmxm = (1−km)q+kmTxm → z. By the continuity of T , we obtain Tz = z. Thus,
M ∩ F(T) ∩ F(f) ∩ F(g)/= ∅ proves the first case.

The weak compactness of τ − wcl(T(M)) implies that τ − wcl(Tn(M)) is weakly
compact and hence τ-sequentially complete due to completeness of X. From Lemma 3.3, for
each n ≥ 1, there exists xn ∈ F(f)∩F(g) such that xn = fxn = gxn = Tnxn.Moreover, we have
pα(xn − Txn) → 0 as n → ∞. The weak compactness of τ −wcl(T(M)) implies that there is
a subsequence {Txm} of {Txn} converging weakly to y ∈ τ − wcl(T(M)) as m → ∞. Since
{Txm} is a sequence in T(F(f) ∩ F(g)), therefore y ∈ τ −wcl(T(F(f) ∩ F(g))) ⊆ F(f) ∩ F(g).
Also we have, xm − Txm → 0 as m → ∞. If I − T is demiclosed at 0, then y = Ty. Thus
M ∩ F(T) ∩ F(f) ∩ F(g)/= ∅.

Corollary 3.5. Let M be a nonempty τ-bounded subset of Hausdorff locally convex (resp., complete)
space (E, τ) and let T, f, and g be self-maps of M. Suppose that F(f) ∩ F(g) is q-starshaped, and
τ-closed (resp., τ-weakly closed), τ −cl(T(M)) is compact (resp., τ −wcl(T(M)) is weakly compact),
T is continuous onM (resp., I −T is demiclosed at 0), (T, f) and (T, g) are Banach operator pairs and
satisfy (3.4) for all x, y ∈ M, thenM ∩ F(T) ∩ F(f) ∩ F(g)/= ∅.

Let C = PM(u) ∩ C
f,g

M (u), where Cf,g

M (u) = C
f

M(u) ∩ C
g

M(u) and C
f

M(u) = {x ∈ M : fx ∈
PM(u)}. It is important to note here that PM(u) is always bounded.

Corollary 3.6. Let E be a Hausdorff locally convex (resp., complete) space and T, f, and g be self-
maps of E. If u ∈ E, D ⊆ C, D0 := D ∩ F(f) ∩ F(g) is q-starshaped, τ − cl(T(D0)) ⊆ D0 (resp.,
τ − wcl(T(D0)) ⊆ D0], τ − cl(T(D)) is compact (resp., τ − wcl(T(D)) is weakly compact), T is
continuous on D (resp., I − T is demiclosed at 0), and (3.4) holds for all x, y ∈ D, then PM(u) ∩
F(T) ∩ F(f) ∩ F(g)/= ∅.

Corollary 3.7. Let E be a Hausdorff locally convex (resp., complete) space and T, f, and g be self-maps
of E. If u ∈ E, D ⊆ PM(u), D0 := D ∩ F(f) ∩ F(g) is q-starshaped, τ − cl(T(D0)) ⊆ D0 (resp.,
τ − wcl(T(D0)) ⊆ D0), τ − cl(T(D)) is compact (resp., τ − wcl(T(D)) is weakly compact), T is
continuous on D (resp., I − T is demiclosed at 0), and (3.4) holds for all x, y ∈ D, then PM(u) ∩
F(T) ∩ F(f) ∩ F(g)/= ∅.

Remark 3.8. Khan and Akbar [19, Corollaries 2.4–2.8] and Chen and Li [23, Theorems 4.1 and
4.2] are particular cases of Corollaries 3.5 and 3.6.

The following result extends [14, Theorem4.1], [7, Theorem2.14], [19, Theorem2.9],
and [21, Theorems 2.7–2.11].

Theorem 3.9. Let f, g, T be self-maps of a Hausdorff locally convex space E. If u ∈ E and M ∈ I0
such that T(Mu) ⊆ M, τ − cl(T(Mu)) is compact and ‖Tx − u‖ ≤ ‖x − u‖ for all x ∈ Mu, then
PM(u) is nonempty, closed, and convex with T(PM(u)) ⊆ PM(u). If, in addition, D ⊆ PM(u),
D0 := D ∩ F(f) ∩ F(g) is q-starshaped, τ − cl(T(D0)) ⊆ D0, T is continuous on D, and (3.4) holds
for all x, y ∈ D, then PM(u) ∩ F(T) ∩ F(f) ∩ F(g)/= ∅.

Proof. We utilize Corollary 3.5 instead of Theorem 2.7 in the proof of Theorem 2.12.

Remark 3.10. (1) The class of Banach operator pairs is different from that of weakly compatible
maps; see for example [21, 23, 32].

(2) In Example 2.2, the pair (T, f) is a Banach operator but T and f are not Cq-
commuting maps and hence not a subcompatible pair.
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