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Taking into account possibly inexact data, we study both existence and approximation of fixed
points for certain set-valued mappings of contractive type. More precisely, we study the existence
of convergent iterations in the presence of computational errors for two classes of set-valued
mappings. The first class comprises certain mappings of contractive type, while the second one
contains mappings satisfying a Caristi-type condition.

1. Introduction

The study of the convergence of iterations of mappings of contractive type has been an
important topic in Nonlinear Functional Analysis since Banach’s seminal paper [1] on the
existence of a unique fixed point for a strict contraction [2–5]. Banach’s celebrated theorem
also yields convergence of iterates to the unique fixed point. During the last fifty years or so,
many developments have taken place in this area. Interesting results have also been obtained
regarding set-valued mappings, where the situation is more difficult and less understood.
See, for example, [5–12] and the references cited therein. As already mentioned above, one
of the methods used for proving the classical Banach theorem is to show the convergence of
Picard iterations, which holds for any initial point. In the case of set-valued mappings, we
do not have convergence of all trajectories of the dynamical system induced by the given
mapping. Convergent trajectories have to be constructed in a special way. For instance, in
[7], if at the moment t = 0, 1, . . . we have reached a point xt, then we choose an element
of T(xt) (here T is the given mapping) such that xt+1 approximates the best approximation
of xt from T(xt). Since our mapping acts on a general complete metric space, we cannot, in
general, choose xt+1 as the best approximation of xt by elements of T(xt). Instead, we require
xt+1 to approximate the best approximation up to a positive number εt, such that the sequence
{εt}∞t=0 is summable. This method allowed Nadler [7] to obtain the existence of a fixed point
of a strictly contractive set-valued mapping and the authors of [6] to obtain more general
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results. In view of this state of affairs, it is important to study convergence of the iterates of
set-valued mappings in the presence of errors.

In this paper, we study the existence of convergent iterations in the presence of
computational errors for two classes of set-valued mappings. The first class comprises certain
mappings of contractive type, while the second one contains mappings satisfying a Caristi-
type condition.

Aswe have alreadymentioned, the existence of a convergent iterative sequence for set-
valued strict contractionswas established byNadler [7]. For amore general class ofmappings
satisfying a certain contractive condition, this was proved in [11]. In the present paper, we
show that the existence result of [11] still holds even when possible computational errors are
taken into account (see Theorems 2.2–2.4 below).

In Section 3, we obtain certain results regarding set-valued mappings satisfying a
Caristi-type condition which complement the results in [6]. There we establish the existence
of a fixed point for such mappings assuming that their graphs are closed. Here we first show
that a set-valued mapping satisfies a Caristi-type condition if and only if there exists an
iterative sequence {xi}∞i=1 such that the sum of the distances between xi and xi+1, when i
runs from zero to infinity, is finite. Then we prove an analog of the Caristi-type result in [6],
replacing the closedness of the graph of themappingwith a lower semicontinuity assumption
as in Caristi’s original theorem [13].

2. Set-Valued Mappings of Contractive Type

Let (X, ρ) be a complete metric space. For each x ∈ X and each nonempty set A ⊂ X, set

ρ(x,A) = inf
{
ρ
(
x, y

)
: y ∈ A

}
. (2.1)

For each pair of nonempty sets A,B ⊂ X, put

H(A,B) = max

{

sup
x∈A

ρ(x, B), sup
x∈B

ρ(x,A)

}

. (2.2)

Let T : X → 2X \ {∅}, x∗ ∈ X satisfy

x∗ ∈ Tx∗, (2.3)

let φ : [0,∞) → [0, 1) be a decreasing function such that

φ(t) < 1 ∀t ∈ [0,∞), (2.4)

and assume that

H(T(x), T(x∗)) ≤ φ
(
ρ(x, x∗)

)
ρ(x, x∗) ∀x ∈ X. (2.5)

We begin with the following obvious fact.
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Lemma 2.1. Let x0 ∈ X, δ > 0, and let a sequence of mappings Ti : X → 2X \ {∅}, i = 0, 1, . . .,
satisfy

H(Ti(x), T(x)) ≤ δ, i = 0, 1, . . . , x ∈ X. (2.6)

Then there exist sequences {xi}∞i=0 ⊂ X and {yi}∞i=1 ⊂ X such that for any integer i ≥ 0,

yi+1 ∈ T(xi),

ρ
(
x∗, yi+1

) ≤ ρ(x∗, Txi) + δ,

xi+1 ∈ Ti(xi),

ρ
(
xi+1, yi+1

) ≤ ρ
(
yi+1, Tixi

)
+ δ.

(2.7)

Theorem 2.2. Let ε and M be positive. Then there exist δ ∈ (0, ε) and a natural number n0 such
that for each sequence of mappings Ti : X → 2X \ {∅}, i = 0, 1, . . ., satisfying

H(Ti(x), T(x)) ≤ δ, i = 0, 1, . . . , x ∈ X, (2.8)

and each x ∈ X satisfying

ρ(x, x∗) ≤ M, (2.9)

there is a sequence {xi}∞i=0 ⊂ X such that

x0 = x, xi+1 ∈ Ti(xi), i = 0, 1, . . . , (2.10)

and the inequality

ρ(xi, x∗) ≤ ε (2.11)

holds for all integers i ≥ n0.

This theorem is a consequence of Lemma 2.1 and our next result.

Theorem 2.3. Let ε ∈ (0, 1). Then there exists δ ∈ (0, ε) so that for each M > 0, there is a natural
number n0 such that the following assertion holds.

Assume that a sequence of mappings Ti : X → 2X \ {∅}, i = 0, 1, . . ., satisfies

H(Ti(x), T(x)) ≤ δ, i = 0, 1, . . . , (2.12)

for all x ∈ X, a sequence {xi}∞i=0 ⊂ X satisfies

ρ(x0, x∗) ≤ M, xi+1 ∈ Ti(xi), i = 0, 1, . . . , (2.13)
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and that for each integer i ≥ 0, there is yi+1 ∈ T(xi) such that

ρ
(
x∗, yi+1

) ≤ ρ(x∗, Txi) + δ, (2.14)

ρ
(
xi+1, yi+1

) ≤ ρ
(
yi+1, Tixi

)
+ δ. (2.15)

Then ρ(xi, x∗) ≤ ε for all integers i ≥ n0.

Proof. Choose a positive number δ < ε/12 such that

6δ ≤
(ε
2

)(
1 − φ

(ε
2

))
. (2.16)

Let M > 0. Fix a natural number n0 such that

n0 > 4 +
M

δ
. (2.17)

Assume that a sequence of mappings Ti : X → 2X \{∅}, i = 0, 1, . . ., satisfies (2.12), {xi}∞i=0 ⊂ X
satisfies (2.13), and that for each integer i ≥ 0, there is

yi+1 ∈ T(xi) (2.18)

such that (2.14) and (2.15) hold.
Let i ≥ 0 be an integer. By (2.3), (2.5), and (2.14),

ρ
(
x∗, yi+1

) ≤ ρ(x∗, T(xi)) + δ ≤ H(T(x∗), T(xi)) + δ

≤ φ
(
ρ(xi, x∗)

)
ρ(xi, x∗) + δ.

(2.19)

By (2.15), (2.18), and (2.12),

ρ
(
xi+1, yi+1

) ≤ ρ
(
yi+1, Ti(xi)

)
+ δ ≤ H(T(xi), Ti(xi)) + δ ≤ 2δ. (2.20)

By (2.19) and (2.20),

ρ(x∗.xi+1) ≤ ρ
(
x∗, yi+1

)
+ ρ

(
yi+1, xi+1

) ≤ φ
(
ρ(xi, x∗)

)
ρ(xi, x∗) + 3δ (2.21)

for all integers i ≥ 0.
We claim that there is an integer j ∈ {0, . . . , n0} such that

ρ
(
xj , x∗

) ≤ ε

2
. (2.22)
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Assume the contrary. Then

ρ
(
xj , x∗

)
>

ε

2
, j = 0, . . . , n0. (2.23)

By (2.21), (2.23), and (2.16), we have, for all integers j ∈ {0, . . . , n0 − 1},

ρ
(
x∗, xj

) − ρ
(
x∗, xj+1

) ≥ ρ
(
x∗, xj

) − φ
(
ρ
(
xj , x∗

))
ρ
(
xj , x∗

) − 3δ

≥ ρ
(
x∗, xj

)(
1 − φ

(
ρ
(
xj , x∗

))) − 3δ

≥
(ε
2

)(
1 − φ

(ε
2

))
− 3δ ≥ δ.

(2.24)

When combined with (2.13), this implies that

M ≥ ρ(x∗, x0) ≥ ρ(x∗, x0) − ρ(x∗, xn0) =
n0−1∑

j=0

[
ρ
(
x∗, xj

) − ρ
(
x∗, xj+1

)] ≥ n0δ. (2.25)

This, however, contradicts (2.17).
Therefore, there is an integer j ∈ {0, . . . , n0} such that (2.22) holds. Next, we assert that

ρ(xi, x∗) ≤ ε ∀ integers i ≥ j. (2.26)

Assume the contrary. Then there is an integer p > j such that

ρ
(
xp, x∗

)
> ε, ρ(xi, x∗) ≤ ε ∀ integers i satisfying j ≤ i < p. (2.27)

There are two cases: either

ρ
(
xp−1, x∗

) ≤ ε

2
(2.28)

or

ρ
(
xp−1, x∗

)
>

ε

2
. (2.29)

Assume first that (2.28) holds. By (2.21), (2.28), and (2.16),

ρ
(
xp, x∗

) ≤ ρ
(
xp−1, x∗

)
+ 3δ ≤ ε

2
+ 3δ ≤ ε. (2.30)
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Now assume that (2.29) holds. By (2.29), (2.21), (2.27), and (2.16),

ρ
(
xp, x∗

) ≤ φ
(
ρ
(
xp−1, x∗

))
ρ
(
xp−1, x∗

)
+ 3δ

≤ φ
(ε
2

)
ε + 3δ ≤ φ

(ε
2

)
ε + ε

(
1 − φ

(ε
2

))
= ε.

(2.31)

This contradicts (2.27).
The contradiction we have reached in both cases proves that (2.26) holds.
This completes the proof of Theorem 2.3.

We end this section with another consequence of Theorem 2.3.

Theorem 2.4. Let {εi}∞i=0 ⊂ (0,∞), Ti : X → 2X \ {∅}, i = 0, 1, . . ., and assume that, for all x ∈ X,

H(Tx, Ti(x)) ≤ εi, i = 1, 2, . . . , lim
i→∞

εi = 0. (2.32)

Then for each x ∈ X, there is a sequence {xi}∞i=0 ⊂ X such that

x0 = x, xi+1 ∈ Tixi, i = 0, 1, . . . , lim
i→∞

xi = x∗. (2.33)

Proof. Let x ∈ X. Put x0 = x and define a sequence {xi}∞i=0 ⊂ X by induction so that for each
integer i ≥ 0, there is yi+1 ∈ T(xi) satisfying

ρ
(
x∗, yi+1

) ≤ ρ(x∗, Txi) + εi,

xi+1 ∈ Tixi, ρ
(
yi+1, xi+1

) ≤ ρ
(
yi+1, Tixi

)
+ εi.

(2.34)

In order to show that

lim
i→∞

ρ(xi, x∗) = 0, (2.35)

we let ε ∈ (0, 1) and prove that for all sufficiently large natural numbers i,

ρ(xi, x∗) ≤ ε. (2.36)

Let δ ∈ (0, ε) be as guaranteed by Theorem 2.3.
There is a natural number n1 such that

εi < δ ∀ integers i ≥ n1. (2.37)

Choose M > 0 such that

ρ(xn1 , x∗) < M. (2.38)
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Let a natural number n0 be as guaranteed by Theorem 2.3.
Then for all integers i ≥ n0 + n1,

ρ(xi, x∗) ≤ ε. (2.39)

Theorem 2.4 is proved.

3. Caristi-Type Theorems for Set-Valued Mappings

We begin this section by recalling [6, Theorem 5.3].

Theorem 3.1. Assume that (X, ρ) is a complete metric space, T : X → 2X \ {∅}, graph(T) =
{(x, y) ∈ X × X : y ∈ Tx} is closed, φ : X → R1 ∪ {∞} is bounded from below, and that for each
x ∈ X,

inf
{
φ
(
y
)
+ ρ

(
x, y

)
: y ∈ Tx

} ≤ φ(x). (3.1)

Let {εn}∞n=0 ⊂ (0,∞),
∑∞

n=0 εn < ∞, and let x0 ∈ X satisfy φ(x0) < ∞. Assume that for each integer
n ≥ 0, xn+1 ∈ T(xn) and

φ(xn+1) + ρ(xn, xn+1) ≤ inf
{
φ
(
y
)
+ ρ

(
x, y

)
: y ∈ T(xn)

}
+ εn. (3.2)

Then {xn}∞n=0 converges to a fixed point of T .

In the proof of this theorem, we actually showed that
∑∞

i=0 ρ(xi, xi+1) < ∞.
It turns out that the existence of such a sequence is actually equivalent to the existence

of a function φ : X → R1 ∪ {∞} which is bounded from below and such that for each x ∈ X,

inf
{
φ
(
y
)
+ ρ

(
x, y

)
: y ∈ Tx

} ≤ φ(x). (3.3)

More precisely, we are going to prove the following result.

Theorem 3.2. Let (X, ρ) be a complete metric space and T : X → 2X \{∅}. The following conditions
are equivalent.

(A) There exists a function φ : X → R1∪{∞}, which is bounded from below and not identically
∞, such that for each x ∈ X, inequality (3.3) holds.

(B) There exists a sequence {xn}∞n=0 ⊂ X such that xn+1 ∈ T(xn) for all integers n and∑∞
n=0 ρ(xn, xn+1) < ∞.

Proof. The fact that (A) implies (B)was proved in [6]. To show that (B) implies (A), we define,
for each x ∈ X,

φ(x) = inf

{ ∞∑

i=0

ρ(xi, xi+1) : {xi}∞i=0 ⊂ X, x0 = x, xi+1 ∈ T(xi) ∀ integers i ≥ 0

}

. (3.4)
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Let x ∈ X. Note that φ(x) < ∞ if and only if there is a sequence {xi}∞i=0 ⊂ X such that x0 = x,
xi+1 ∈ T(xi), i = 0, 1, . . ., and

∞∑

i=0

ρ(xi, xi+1) < ∞. (3.5)

It is sufficient to show that (3.3) holds for all x ∈ X. To this end, let x ∈ X. We may assume
that φ(x) < ∞. Let ε > 0. There is {xi}∞i=0 ⊂ X such that x0 = x,

xt+1 ∈ Txi, i = 0, 1, . . . ,

∞∑

i=0

ρ(xi, xi+1) ≤ φ(x) + ε.
(3.6)

Then

x1 ∈ T(x), ρ(x, x1) + φ(x1) ≤ ρ(x, x1) +
∞∑

i=1

ρ(xi, xi+1) ≤ φ(x) + ε, (3.7)

and so,

inf
{
φ
(
y
)
+ ρ

(
x, y

)
: y ∈ T(x)

} ≤ φ(x) + ε. (3.8)

Since ε is any positive number, we conclude that (3.3) holds. This completes the proof of
Theorem 3.2.

It should be mentioned that in Theorem 3.1 we pose an assumption on T without
assuming that φ possesses lower semicontinuity properties, while in the original Caristi
theorem no assumption was made on the mapping, but the function φ was assumed to be
lower semicontinuous. In the following result, we obtain a simple analog of Theorem 3.1 for
this situation.

Theorem 3.3. Assume that (X, ρ) is a complete metric space, T : X → 2X \ {∅}, Tx is closed for
each x ∈ X, φ : X → R1 ∪{∞} is a lower semicontinuous function which is bounded from below and
not identically∞, and that for each x ∈ X, inequality (3.3) holds. Then T has a fixed point.

Proof. Choose x0 ∈ X such that

φ(x0) ≤ inf
{
φ(z) : z ∈ X

}
+
1
8
. (3.9)

By Ekeland’s variational principle [14], there is x1 ∈ X such that

ρ(x0, x1) ≤ 1,

φ(x1) < φ(z) +
(
1
8

)
ρ(z, x1) ∀z ∈ X \ {x1}.

(3.10)
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Let ε > 0. By (3.3) and (3.10), there exists zε ∈ Tx1 such that

φ(zε) + ρ(x1, zε) ≤ φ(x1) + ε ≤ ε + φ(zε) +
(
1
8

)
ρ(zε, x1),

(
1
2

)
ρ(x1, zε) ≤ ε,

inf
{
ρ(x1, z) : z ∈ T(x1)

} ≤ 2ε.

(3.11)

Since ε is any positive number, it follows that x1 ∈ T(x1). Theorem 3.3 is proved.

Note added in proof

After our paper was accepted for publication, Pavel Semenov has kindly informed us that our
Theorem 3.3 is almost identical with Corollary 1.7 on page 521 of Volume I of the Handbook
of Multivalued Analysis by S. Hu and N. S. Papageorgiou, Kluwer Academic Publishers,
Dordrecht, 1997. It may be of interest to note that the above authors deduce their Corollary
from a set-valued version of Caristi’s fixed point theorem, while we use Ekeland’s variational
principle (which is known to be equivalent to Caristi’s fixed point theorem).
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