QUASICONTRACTION NONSELF-MAPPINGS ON CONVEX METRIC SPACES AND COMMON FIXED POINT THEOREMS

LJILJANA GAJIĆ AND VLADIMIR RAKOČEVIĆ

Received 29 September 2004 and in revised form 24 January 2005

We consider quasicontraction nonself-mappings on Takahashi convex metric spaces and common fixed point theorems for a pair of maps. Results generalizing and unifying fixed point theorems of Ivanov, Jungck, Das and Naik, and Ćirić are established.

1. Introduction and preliminaries

Let X be a complete metric space. A map $T: X \mapsto X$ such that for some constant $\lambda \in(0,1)$ and for every $x, y \in X$

$$
\begin{equation*}
d(T x, T y) \leq \lambda \cdot \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} \tag{1.1}
\end{equation*}
$$

is called quasicontraction. Let us remark that Ćirić [1] introduced and studied quasicontraction as one of the most general contractive type map. The well known Ćirić's result (see, e.g., $[1,6,11]$) is that quasicontraction T possesses a unique fixed point.

For the convenience of the reader we recall the following recent Ćirić's result.
Theorem 1.1 [2, Theorem 2.1]. Let X be a Banach space, C a nonempty closed subset of X, and ∂C the boundary of C. Let $T: C \mapsto X$ be a nonself mapping such that for some constant $\lambda \in(0,1)$ and for every $x, y \in C$

$$
\begin{equation*}
d(T x, T y) \leq \lambda \cdot \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} . \tag{1.2}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
T(\partial C) \subset C . \tag{1.3}
\end{equation*}
$$

Then T has a unique fixed point in C.
Following Ćirić [3], let us remark that problem to extend the known fixed point theorem for self mappings $T: C \mapsto C$, defined by (1.1), to corresponding nonself mappings $T: C \mapsto X$, $C \neq X$, was open more than 20 years.

In 1970, Takahashi [15] introduced the definition of convexity in metric space and generalized same important fixed point theorems previously proved for Banach spaces. In
this paper we consider quasicontraction nonself-mappings on Takahashi convex metric spaces and common fixed point theorems for a pair of maps. Results generalizing and unifying fixed point theorems of Ivanov [7], Jungck [8], Das and Naik [3], Cirić [2], Gajić [5] and Rakočević [12] are established.

Let us recall that (see Jungck [9]) the self maps f and g on a metric space (X, d) are said to be a compatible pair if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(g f x_{n}, f g x_{n}\right)=0 \tag{1.4}
\end{equation*}
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g x_{n}=\lim _{n \rightarrow \infty} f x_{n}=x \tag{1.5}
\end{equation*}
$$

for some x in X.
Following Sessa [14] we will say that $f, g: X \mapsto X$ are weakly commuting if

$$
\begin{equation*}
d(f g x, g f x) \leq d(f x, g x) \quad \text { for every } x \in X \tag{1.6}
\end{equation*}
$$

Clearly weak commutativity of f and g is a generalization of the conventional commutativity of f and g, and the concept of compatibility of two mappings includes weakly commuting mappings as a proper subclass.

We recall the following definition of a convex metric space (see [15]).
Definition 1.2. Let X be a metric space and $I=[0,1]$ the closed unit interval. A Takahashi convex structure on X is a function $W: X \times X \times I \mapsto X$ which has the property that for every $x, y \in X$ and $\lambda \in I$

$$
\begin{equation*}
d(z, W(x, y, \lambda)) \leq \lambda d(z, x)+(1-\lambda) d(z, y) \tag{1.7}
\end{equation*}
$$

for every $z \in X$. If (X, d) is equipped with a Takahashi convex structure, then X is called a Takahashi convex metric space.

If (X, d) is a Takahashi convex metric space, then for $x, y \in X$ we set

$$
\begin{equation*}
\operatorname{seg}[x, y]=\{W(x, y, \lambda): \lambda \in[0,1]\} . \tag{1.8}
\end{equation*}
$$

Let us remark that any convex subset of normed space is a convex metric space with $W(x, y, \lambda)=\lambda x+(1-\lambda) y$.

2. Main results

The next theorem is our main result.
Theorem 2.1. Let (X, d) be a complete Takahashi convex metric space with convex structure W which is continuous in the third variable, C a nonempty closed subset of X and ∂C the boundary of C. Let $g: C \mapsto X, f: X \mapsto X$ and $f: C \mapsto C$. Suppose that $\partial C \neq \varnothing, f$ is continuous, and let us assume that f and g satisfy the following conditions.
(i) For every $x, y \in C$

$$
\begin{equation*}
d(g x, g y) \leq M_{\omega}(x, y) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{gather*}
M_{\omega}(x, y)=\max \{\omega[d(f x, f y)], \omega[d(f x, g x)], \omega[d(f y, g y)], \\
\omega[d(f x, g y)], \omega[d(f y, g x)]\}, \tag{2.2}
\end{gather*}
$$

$\omega:[0,+\infty) \mapsto[0,+\infty)$ is a nondecreasing semicontinuous function from the right, such that $\omega(r)<r$, for $r>0$, and $\lim _{r \rightarrow \infty}[r-\omega(r)]=+\infty$.
(ii) f and g are a compatible pair on C, that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(g f x_{n}, f g x_{n}\right)=0 \tag{2.3}
\end{equation*}
$$

whenever $\left\{x_{n}\right\}$ is a sequence in C such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g x_{n}=\lim _{n \rightarrow \infty} f x_{n}=x \tag{2.4}
\end{equation*}
$$

for some x in X.
(iii)

$$
\begin{equation*}
g(C) \bigcap C \subset f(C) \tag{2.5}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
g(\partial C) \subset C . \tag{2.6}
\end{equation*}
$$

(v)

$$
\begin{equation*}
f(\partial C) \supset \partial C . \tag{2.7}
\end{equation*}
$$

Then f and g have a unique common fixed point z in C.
Proof. Starting with an arbitrary $x_{0} \in \partial C$, we construct a sequence $\left\{x_{n}\right\}$ of points in C as follows. By (2.6) $g\left(x_{0}\right) \in C$. Hence, (2.5) implies that there is $x_{1} \in C$ such that $f\left(x_{1}\right)=g\left(x_{0}\right)$. Let us consider $g\left(x_{1}\right)$. If $g\left(x_{1}\right) \in C$, again by (2.5) there is $x_{2} \in C$ such that $f\left(x_{2}\right)=g\left(x_{1}\right)$. Suppose that $g\left(x_{1}\right) \notin C$. Now, because W is continuous in the third
variable, there exists $\lambda_{11} \in[0,1]$ such that

$$
\begin{equation*}
W\left(f\left(x_{1}\right), g\left(x_{1}\right), \lambda_{11}\right) \in \partial C \bigcap \operatorname{seg}\left[f\left(x_{1}\right), g\left(x_{1}\right)\right] \tag{2.8}
\end{equation*}
$$

By (2.7) there is $x_{2} \in \partial C$ such that $f\left(x_{2}\right)=W\left(f\left(x_{1}\right), g\left(x_{1}\right), \lambda_{11}\right)$.
Hence, by induction we construct a sequence $\left\{x_{n}\right\}$ of points in C as follows. If $g\left(x_{n}\right) \in$ C, than by (2.5) $f\left(x_{n+1}\right)=g\left(x_{n}\right)$ for some $x_{n+1} \in C$; if $g\left(x_{n}\right) \notin C$, then there exists $\lambda_{n n} \in$ $[0,1]$ such that

$$
\begin{equation*}
W\left(f\left(x_{n}\right), g\left(x_{n}\right), \lambda_{n n}\right) \in \partial C \bigcap \operatorname{seg}\left[f\left(x_{n}\right), g\left(x_{n}\right)\right] . \tag{2.9}
\end{equation*}
$$

Now, by (2.7) pick $x_{n+1} \in \partial C$ such that

$$
\begin{equation*}
f\left(x_{n+1}\right)=W\left(f\left(x_{n}\right), g\left(x_{n}\right), \lambda_{n n}\right) \tag{2.10}
\end{equation*}
$$

Let us remark (see [6]) that for every $x, y \in X$ and every $\lambda \in[0,1]$

$$
\begin{equation*}
d(x, y)=d(x, W(x, y, \lambda))+d(W(x, y, \lambda), y) \tag{2.11}
\end{equation*}
$$

Furthermore, if $u \in X$ and $z=W(x, y, \lambda) \in \operatorname{seg}[x, y]$ then

$$
\begin{equation*}
d(u, z)=d(u, W(x, y, \lambda)) \leq \max \{d(u, x), d(u, y)\} . \tag{2.12}
\end{equation*}
$$

First let us prove that

$$
\begin{equation*}
f\left(x_{n+1}\right) \neq g\left(x_{n}\right) \Longrightarrow f\left(x_{n}\right)=g\left(x_{n-1}\right) . \tag{2.13}
\end{equation*}
$$

Suppose the contrary that $f\left(x_{n}\right) \neq g\left(x_{n-1}\right)$. Then $x_{n} \in \partial C$. Now, by (2.5) $g\left(x_{n}\right) \in C$, hence $f\left(x_{n+1}\right)=g\left(x_{n}\right)$, a contradiction. Thus we prove (2.13).

We will prove that $g\left(x_{n}\right)$ and $f\left(x_{n}\right)$ are Cauchy sequences. First we will prove that these sequences are bounded, that is that the set

$$
\begin{equation*}
A=\left(\bigcup_{i=0}^{\infty}\left\{f\left(x_{i}\right)\right\}\right) \bigcup\left(\bigcup_{i=0}^{\infty}\left\{g\left(x_{i}\right)\right\}\right) \tag{2.14}
\end{equation*}
$$

is bounded.
For each $n \geq 1$ set

$$
\begin{gather*}
A_{n}=\left(\bigcup_{i=0}^{n-1}\left\{f\left(x_{i}\right)\right\}\right) \bigcup\left(\bigcup_{i=0}^{n-1}\left\{g\left(x_{i}\right)\right\}\right), \tag{2.15}\\
a_{n}=\operatorname{diam}\left(A_{n}\right) .
\end{gather*}
$$

We will prove that

$$
\begin{equation*}
a_{n}=\max \left\{d\left(f\left(x_{0}\right), g\left(x_{i}\right)\right): 0 \leq i \leq n-1\right\} . \tag{2.16}
\end{equation*}
$$

If $a_{n}=0$, then $f\left(x_{0}\right)=g\left(x_{0}\right)$. We will prove that $g\left(x_{0}\right)$ is a common fixed point for f and g. By (2.3) it follows that

$$
\begin{equation*}
f g\left(x_{0}\right)=g f\left(x_{0}\right)=g g\left(x_{0}\right) . \tag{2.17}
\end{equation*}
$$

Now we obtain

$$
\begin{equation*}
d\left(g g\left(x_{0}\right), g\left(x_{0}\right)\right) \leq M_{\omega}\left(g x_{0}, x_{0}\right)=\omega\left(d\left(g g\left(x_{0}\right), g\left(x_{0}\right)\right)\right) \tag{2.18}
\end{equation*}
$$

and hence $g g\left(x_{0}\right)=g\left(x_{0}\right)$. From (2.17), we conclude that $g\left(x_{0}\right)=z$ is also a fixed point of f. To prove the uniqueness of the common fixed point, let us suppose that $f u=g u=u$ for some $u \in C$. Now, by (2.1) we have

$$
\begin{equation*}
d(z, u)=d(g z, g u) \leq M_{\omega}(z, u)=\omega(d(z, u)), \tag{2.19}
\end{equation*}
$$

and so, $z=u$.
Suppose that $a_{n}>0$. To prove (2.16) we have to consider three cases.
Case 1. Suppose that $a_{n}=d\left(f x_{i}, g x_{j}\right)$ for some $0 \leq i, j \leq n-1$.
(1i) Now, if $i \geq 1$ and $f x_{i}=g x_{i-1}$, we have

$$
\begin{equation*}
a_{n}=d\left(f x_{i}, g x_{j}\right)=d\left(g x_{i-1}, g x_{j}\right) \leq M_{\omega}\left(x_{i-1}, x_{j}\right) \leq \omega\left(a_{n}\right)<a_{n} . \tag{2.20}
\end{equation*}
$$

and we get a contradiction. Hence $i=0$.
(1ii) If $i \geq 1$ and $f x_{i} \neq g x_{i-1}$, we have $i \geq 2$, and $f x_{i-1}=g x_{i-2}$. Hence

$$
\begin{equation*}
f x_{i} \in \operatorname{seg}\left[g\left(x_{i-2}\right), g\left(x_{i-1}\right)\right] \tag{2.21}
\end{equation*}
$$

we have

$$
\begin{align*}
a_{n} & =d\left(f x_{i}, g x_{j}\right) \leq \max \left\{d\left(g x_{i-2}, g x_{j}\right), d\left(g x_{i-1}, g x_{j}\right)\right\} \\
& \leq \max \left\{M_{\omega}\left(x_{i-2}, x_{j}\right), M_{\omega}\left(x_{i-1}, x_{j}\right)\right\} \leq \omega\left(a_{n}\right)<a_{n} \tag{2.22}
\end{align*}
$$

and we get a contradiction.
Case 2. Suppose that $a_{n}=d\left(f x_{i}, f x_{j}\right)$ for some $0 \leq i, j \leq n-1$.
(2i) If $f x_{j}=g x_{j-1}$, then Case (2i) reduces to Case (1i).
(2ii) If $f x_{j} \neq g x_{j-1}$, then as in the Case (1ii) we have $j \geq 2, f x_{j-1}=g x_{j-2}$, and

$$
\begin{equation*}
f x_{j} \in \partial C \bigcap \operatorname{seg}\left[g x_{j-2}, g x_{j-1}\right] . \tag{2.23}
\end{equation*}
$$

Hence

$$
\begin{equation*}
a_{n}=d\left(f x_{i}, f x_{j}\right) \leq \max \left\{d\left(f x_{i}, g x_{j-2}\right), d\left(f x_{i}, g x_{j-1}\right)\right\} \tag{2.24}
\end{equation*}
$$

and Case (2ii) reduces to Case (1i).

Case 3. The remaining case $a_{n}=d\left(g x_{i}, g x_{j}\right)$ for some $0 \leq i, j \leq n-1$, is not possible (see Case (1i)). Hence we proved (2.16).

Now

$$
\begin{gather*}
a_{n}=d\left(f x_{0}, g x_{i}\right) \leq d\left(f x_{0}, g x_{0}\right)+d\left(g x_{0}, g x_{i}\right) \leq d\left(f x_{0}, g x_{0}\right)+\omega\left(a_{n}\right), \tag{2.25}\\
a_{n}-\omega\left(a_{n}\right) \leq d\left(f x_{0}, g x_{0}\right) . \tag{2.26}
\end{gather*}
$$

By (i) there is $r_{0} \in[0,+\infty)$ such that

$$
\begin{equation*}
r-\omega(r)>d\left(f x_{0}, g y_{0}\right), \quad \text { for } r>r_{0} . \tag{2.27}
\end{equation*}
$$

Thus, by (2.26)

$$
\begin{equation*}
a_{n} \leq r_{0}, \quad n=1,2, \ldots \tag{2.28}
\end{equation*}
$$

and clearly

$$
\begin{equation*}
a=\lim _{n \rightarrow \infty} a_{n}=\operatorname{diam}(A) \leq r_{0} . \tag{2.29}
\end{equation*}
$$

Hence we proved that $g x_{n}$ and $f x_{n}$ are bounded sequences.
To prove that $g x_{n}$ and $f x_{n}$ are Cauchy sequences, let us consider the set

$$
\begin{equation*}
B_{n}=\left(\bigcup_{i=n}^{\infty}\left\{f x_{i}\right\}\right) \bigcup\left(\bigcup_{i=n}^{\infty}\left\{g x_{i}\right\}\right), \quad n=2,3, \ldots . \tag{2.30}
\end{equation*}
$$

By (2.16) we have

$$
\begin{equation*}
b_{n} \equiv \operatorname{diam}\left(B_{n}\right)=\sup _{j \geq n} d\left(f x_{n}, g x_{j}\right), \quad n=1,2, \ldots \tag{2.31}
\end{equation*}
$$

If $f x_{n}=g x_{n-1}$, then as in Case (1i) for each $j \geq n$

$$
\begin{equation*}
b_{n}=d\left(f x_{n}, g x_{j}\right)=d\left(g x_{n-1}, g x_{j}\right) \leq \omega\left(b_{n-1}\right), \quad n=1,2, \ldots \tag{2.32}
\end{equation*}
$$

If $f x_{n} \neq g x_{n-1}$, then as in Case (1ii) for each $n \geq 1$ and $j \geq n$

$$
\begin{equation*}
b_{n}=d\left(f x_{n}, g x_{j}\right) \leq \max \left\{d\left(g x_{n-2}, g x_{j}\right), d\left(g x_{n-1}, g x_{j}\right)\right\} \leq \omega\left(b_{n-2}\right) . \tag{2.33}
\end{equation*}
$$

By (2.32) and (2.33) we get

$$
\begin{equation*}
b_{n} \leq \omega\left(b_{n-2}\right), \quad n=2,3, \ldots \tag{2.34}
\end{equation*}
$$

Clearly, $b_{n} \geq b_{n+1}$ for each n, and set $\lim _{n} b_{n}=b$. We will prove that $b=0$. If $b>0$, then (2.34) and (i) imply $b \leq \omega(b)<b$, and we get a contradiction. It follows that both $f x_{n}$ and $g x_{n}$ are Cauchy sequences. Since $f x_{n} \in C$ and C is a closed subset of a complete metric space X we conclude that $\lim _{n} f x_{n}=y \in C$. Furthermore,

$$
\begin{equation*}
d\left(f\left(x_{n}\right), g\left(x_{n}\right)\right) \longrightarrow 0, \quad n \longrightarrow \infty, \tag{2.35}
\end{equation*}
$$

implies $\lim g\left(x_{n}\right)=y$. Hence,

$$
\begin{equation*}
\lim g\left(x_{n}\right)=\lim f\left(x_{n}\right)=y \in C \tag{2.36}
\end{equation*}
$$

By continuity of f

$$
\begin{equation*}
\lim f\left(g\left(x_{n}\right)\right)=\lim f\left(f\left(x_{n}\right)\right)=f(y) \in C . \tag{2.37}
\end{equation*}
$$

Now, by (2.3), we have

$$
\begin{equation*}
d\left(g f\left(x_{n}\right), f(y)\right) \leq d\left(g f\left(x_{n}\right), f g\left(x_{n}\right)\right)+d\left(f g\left(x_{n}\right), f(y)\right) \longrightarrow 0, \quad n \longrightarrow \infty, \tag{2.38}
\end{equation*}
$$

that is

$$
\begin{equation*}
\lim (g f)\left(x_{n}\right)=f(y) \tag{2.39}
\end{equation*}
$$

Now,

$$
\begin{align*}
M_{\omega}\left(f x_{n}, y\right) & \longrightarrow \omega(d(f y, g y)) \quad n \longrightarrow \infty \\
d\left(g f x_{n}, g y\right) & \leq M_{\omega}\left(f x_{n}, y\right) \quad n \longrightarrow \infty \tag{2.40}
\end{align*}
$$

implies

$$
\begin{equation*}
d(f y, g y) \leq \omega(d(f y, g y)) . \tag{2.41}
\end{equation*}
$$

Hence, $f(y)=g(y)$, and $g y$ is a common fixed point of f and $g($ see (2.17)).
In the special case, when $\omega(r)=\lambda \cdot r$ where $0<\lambda<1$, we obtain the following result.
Theorem 2.2. Let (X, d) be a complete Takahashi convex metric space with convex structure W which is continuous in the third variable, C a nonempty closed subset of X and ∂C the boundary of C. Let $g: C \mapsto X, f: X \mapsto X$ and $f: C \mapsto C$. Suppose that $\partial C \neq \varnothing, f$ is continuous, and let us assume that f and g satisfy the following conditions.
(i) There exists a constant $\lambda \in(0,1)$ such that for every $x, y \in C$

$$
\begin{equation*}
d(g x, g y) \leq \lambda \cdot M(x, y), \tag{2.42}
\end{equation*}
$$

where

$$
\begin{equation*}
M(x, y)=\max \{d(f x, f y), d(f x, g x), d(f y, g y), d(f x, g y), d(f y, g x)\} . \tag{2.43}
\end{equation*}
$$

Suppose that the conditions (ii)-(v) in Theorem 2.1 are satisfied. Then f and g have a unique common fixed point z in C and g is continuous at z. Moreover, if $z_{n} \in C, n=1,2, \ldots$, then

$$
\begin{equation*}
\lim d\left(f z_{n}, g z_{n}\right)=0 \quad \text { iff } \lim _{n} z_{n}=z \tag{2.44}
\end{equation*}
$$

Proof. By Theorem 2.1 we know that f and g have a unique common fixed point z in C. Now, we show that g is continuous at z. Let $\left\{y_{n}\right\}$ be a sequence in C such that $y_{n} \rightarrow z$.

Now we have

$$
\begin{align*}
d\left(g y_{n}, g z\right) & \leq \lambda \cdot M\left(y_{n}, z\right) \\
& =\lambda \cdot \max \left\{d\left(f y_{n}, f z\right), d\left(f y_{n}, g y_{n}\right), d\left(f z, g y_{n}\right)\right\} \\
& =\lambda \cdot \max \left\{d\left(f y_{n}, f z\right), d\left(f y_{n}, g y_{n}\right)\right\} \tag{2.45}\\
& \leq \lambda \cdot\left(d\left(f y_{n}, f z\right)+d\left(f z, g y_{n}\right)\right),
\end{align*}
$$

that is

$$
\begin{equation*}
d\left(g y_{n}, g z\right) \leq(1-\lambda)^{-1} \lambda \cdot d\left(f y_{n}, f z\right) \tag{2.46}
\end{equation*}
$$

Therefore, we have $g y_{n} \rightarrow g z$ and so g is continuous at z. To prove (2.44), let us suppose that $w \in C$. Now, since $f z=g z=z$, we have

$$
\begin{align*}
d(f w, g w) & \leq d(f w, f z)+d(g w, g z) \leq d(f w, f z)+\lambda \cdot M(w, z) \\
& \leq d(f w, f z)+\lambda \cdot \max \{d(f w, f z), d(f w, g w), d(f z, g w)\} \tag{2.47}\\
& \leq d(f w, f z)+\lambda \cdot(d(f w, f z)+d(f w, g w))
\end{align*}
$$

that is

$$
\begin{equation*}
(1-\lambda) d(f w, g w) \leq(1+\lambda) d(f w, f z) \tag{2.48}
\end{equation*}
$$

Let us remark that

$$
\begin{align*}
d(f w, f z) & \leq d(f w, g w)+d(g w, g z) \leq d(f w, g w)+\lambda \cdot M(w, z) \\
& \leq d(f w, g w)+\lambda \cdot \max \{d(f w, f z), d(f w, g w), d(f z, g w)\} \tag{2.49}\\
& \leq d(f w, g w)+\lambda \cdot(d(f w, f z)+d(f w, g w))
\end{align*}
$$

that is

$$
\begin{equation*}
(1-\lambda) d(f w, f z) \leq(1+\lambda) d(f w, g w) \tag{2.50}
\end{equation*}
$$

By (2.48) and (2.50) we obtain

$$
\begin{align*}
(1-\lambda) d(f w, g w) & \leq(1+\lambda) d(f w, f z) \\
& \leq(1-\lambda)^{-1}(1+\lambda)^{2} d(f w, g w) \tag{2.51}
\end{align*}
$$

Clearly (2.51) implies (2.44).
Remark 2.3. Let (K, ρ) be a bounded metric space. It is said that the fixed point problem for a mapping $A: K \mapsto K$ is well posed if there exists a unique $x_{A} \in K$ such that $A x_{A}=x_{A}$ and the following property holds: If $\left\{x_{n}\right\} \subset K$ and $\rho\left(x_{n}, A x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, then $\rho\left(x_{n}, x_{A}\right) \rightarrow 0$ as $n \rightarrow \infty$. Let us remark that condition (2.44) is related to the notion
of well posed fixed point problem, and the notion of well-posedness is of central importance in many areas of Mathematics and its applications ($[4,10,13]$).

Remark 2.4. If in Theorem 2.1 we let f be the identity map on X and $\omega(r)=\lambda \cdot r$ where $0<\lambda<1$, we get Ćirić's Theorem 1.1 (Gajić's theorem [5]) stated for a Banach (convex complete metric) space X.

Remark 2.5. If in Theorem 2.1 we let f be the identity map on X and $C=X$, we get Ivanov's result $[6,7]$ stated for a Banach space X.

Remark 2.6. Let us recall that the first part of Theorem 2.2, that is the existence of the unique common fixed point of f and g was proved by Rakočević [12].

By the proof of Theorem 2.1 we can recover some results of Das and Naik [3] and Jungck [8].

Corollary 2.7 [3, Theorem 2.1]. Let X be a complete metric space. Let f be a continuous self-map on X and g be any self-map on X that commutes with f. Further let f and g satisfy

$$
\begin{equation*}
g(X) \subset f(X) \tag{2.52}
\end{equation*}
$$

and there exists a constant $\lambda \in(0,1)$ such that for every $x, y \in X$

$$
\begin{equation*}
d(g x, g y) \leq \lambda \cdot M(x, y), \tag{2.53}
\end{equation*}
$$

where

$$
\begin{equation*}
M(x, y)=\max \{d(f x, f y), d(f x, g x), d(f y, g y), d(f x, g y), d(f y, g x)\} . \tag{2.54}
\end{equation*}
$$

Then f and g have a unique fixed point.
Proof. We follow the proof of Theorem 2.1. Let us remark that the condition (2.52) implies that starting with an arbitrary $x_{0} \in X$, we construct a sequence $\left\{x_{n}\right\}$ of points in X such that $f\left(x_{n+1}\right)=g\left(x_{n}\right), n=0,1,2, \ldots$. The rest of the proof follows by the proof of Theorem 2.1.

Corollary 2.8 [3, Theorem 3.1]. Let X be a complete metric space. Let f^{2} be a continuous self-map on X and g be any self-map on X that commutes with f. Further let f and g satisfy

$$
\begin{equation*}
g f(X) \subset f^{2}(X) \tag{2.55}
\end{equation*}
$$

and $f(g(x))=g(f(x))$ whenever both sides are defined. Further, let there exist a constant $\lambda \in(0,1)$ such that for every $x, y \in f(X)$

$$
\begin{equation*}
d(g x, g y) \leq \lambda \cdot M(x, y) \tag{2.56}
\end{equation*}
$$

where

$$
\begin{equation*}
M(x, y)=\max \{d(f x, f y), d(f x, g x), d(f y, g y), d(f x, g y), d(f y, g x)\} . \tag{2.57}
\end{equation*}
$$

Then f and g have a unique common fixed point.

Proof. Again, we follow the proof of Theorem 2.1. By (2.55) starting with an arbitrary $x_{0} \in f(X)$, we construct a sequence $\left\{x_{n}\right\}$ of points in $f(X)$ such that $f\left(x_{n+1}\right)=g\left(x_{n}\right)=$ $y_{n}, n=0,1,2, \ldots$. Now $f\left(y_{n}\right)=f\left(g\left(x_{n}\right)\right)=g\left(f\left(x_{n}\right)\right)=g\left(y_{n-1}\right)=z_{n}, n=1,2, \ldots$, and from the proof of Theorem 2.1 we conclude that $\left\{z_{n}\right\}$ is a Cauchy sequence in X and hence convergent to some $z \in X$. Now, for each $n \geq 1$

$$
\begin{align*}
& d\left(f^{2} g\left(x_{n}\right), g f(z)\right) \\
& \quad=d\left(g f^{2}\left(x_{n}\right), g f(z)\right) \leq \lambda \cdot M\left(f^{2}\left(x_{n}\right), f(z)\right) \\
& =\lambda \cdot \max \left\{d\left(f^{2} f\left(x_{n}\right), f^{2}(z)\right), d\left(f^{2} f\left(x_{n}\right), f^{2} g\left(x_{n}\right)\right)\right. \tag{2.58}\\
& \left.\quad d\left(f^{2}(z), g f(z)\right), d\left(f^{2} f\left(x_{n}\right), g f(z)\right), d\left(f^{2}(z), f^{2} g\left(x_{n}\right)\right)\right\} .
\end{align*}
$$

Now, by continuity of f^{2}

$$
\begin{equation*}
d\left(f^{2}(z), g f(z)\right) \leq \lambda \cdot d\left(f^{2}(z), g f(z)\right) \tag{2.59}
\end{equation*}
$$

Whence, $f^{2}(z)=g f(z)$, and $g f z$ is a unique common fixed of f and g.
Let us remark that from Theorem 2.1 and the proof of Corollary 2.7, we get the following.

Corollary 2.9. Let X be a complete metric space. Let f be a continuous self-map on X and g be any self-map on X that weakly commutes with f. Further let f and g satisfy (2.52) and (2.53). Then f and g have a unique common fixed point.

Now as a corollary we get the following result of Jungck [8].
Corollary 2.10. Let X be a complete metric space. Let f be a continuous self-map on X and g be any self-map on X that commutes with f. Further let f and g satisfy (2.52) and there exists a constant $\lambda \in(0,1)$ such that for every $x, y \in X$

$$
\begin{equation*}
d(g x, g y) \leq \lambda \cdot d(f x, f y) \tag{2.60}
\end{equation*}
$$

Then f and g have a unique common fixed point.
Corollary 2.11. Let X be a convex complete metric space, C a nonempty compact subset of X, and ∂C the boundary of C. Let $g: C \mapsto X, f: X \mapsto X$ and $f: C \mapsto C$. Suppose that g and f are continuous, f and g satisfy the conditions (ii)-(v) in Theorem 2.1, and for all $x, y \in C$, $x \neq y$

$$
\begin{equation*}
d(g x, g y)<M(x, y) \tag{2.61}
\end{equation*}
$$

where

$$
\begin{equation*}
M(x, y)=\max \{d(f x, f y), d(f x, g x), d(f y, g y), d(f x, g y), d(f y, g x)\} \tag{2.62}
\end{equation*}
$$

Then f and g have a unique common fixed point in C.
Proof. By Theorem 2.2 and the proof of [12, Theorem 4].

Acknowledgment

The authors are grateful to the referees for some helpful comments and suggestions.

References

[1] Lj. B. Ćiríć, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273.
[2] , Quasi contraction non-self mappings on Banach spaces, Bull. Cl. Sci. Math. Nat. Sci. Math. 23 (1998), 25-31.
[3] K. M. Das and K. V. Naik, Common fixed-point theorems for commuting maps on a metric space, Proc. Amer. Math. Soc. 77 (1979), no. 3, 369-373.
[4] F. S. De Blasi and J. Myjak, Sur la porosité de l'ensemble des contractions sans point fixe [On the porosity of the set of contractions without fixed points], C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), no. 2, 51-54 (French).
[5] Lj. Gajić, Quasi-contractive nonself mappings on Takahashi convex metric spaces, Novi Sad J. Math. 30 (2000), no. 3, 41-46.
[6] O. Hadžić, Foundations of Fixed Point Theory, Institut za Matematiku, Novi Sad, 1978.
[7] A. A. Ivanov, Fixed points of mappings of metric spaces. Studies in topology, II, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 66 (1976), 5-102, 207 (Russian).
[8] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), no. 4, 261263.
[9] , Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986), no. 4, 771-779.
[10] W. A. Kirk and L. M. Saliga, Some results on existence and approximation in metric fixed point theory, J. Comput. Appl. Math. 113 (2000), no. 1-2, 141-152.
[11] V. Rakočević, Funkcionalna analiza, Naučna knjiga, Beograd, 1994.
[12] , Quasi contraction nonself mappings on Banach spaces and common fixed point theorems, Publ. Math. Debrecen 58 (2001), no. 3, 451-460.
[13] S. Reich and A. J. Zaslavski, Well-posedness of fixed point problems, Far East J. Math. Sci. (FJMS), (2001), Special Volume, Part III, 393-401.
[14] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 32(46) (1982), 149-153.
[15] W. Takahashi, A convexity in metric space and nonexpansive mappings. I, Kōdai Math. Sem. Rep. 22 (1970), 142-149.

Ljiljana Gajić: Institute of Mathematics, Faculty of Science, University of Novi Sad, Trg D. Obradovića 4, 21000 Novi Sad, Serbia and Montenegro

E-mail address: gajic@im.ns.ac.yu
Vladimir Rakočević: Department of Mathematics, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia and Montenegro

E-mail address: vrakoc@bankerinter.net

