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Abstract

In this article, we study the existence of coupled coincidence points for multi-valued
nonlinear contractions in partially ordered metric spaces. We do it from two different
approaches, the first is Δ-symmetric property recently studied in Samet and Vetro
(Coupled fixed point theorems for multi-valued nonlinear contraction mappings in
partially ordered metric spaces, Nonlinear Anal. 74, 4260-4268 (2011)) and second
one is mixed g-monotone property studied by Lakshmikantham and Ćirić (Coupled
fixed point theorems for nonlinear contractions in partially ordered metric spaces,
Nonlinear Anal. 70, 4341-4349 (2009)).
The theorems presented extend certain results due to Ćirić (Multi-valued nonlinear
contraction mappings, Nonlinear Anal. 71, 2716-2723 (2009)), Samet and Vetro
(Coupled fixed point theorems for multi-valued nonlinear contraction mappings in
partially ordered metric spaces, Nonlinear Anal. 74, 4260-4268 (2011)) and many
others. We support the results by establishing an illustrative example.
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1. Introduction and preliminaries
Let (X, d) be a metric space. We denote by CB(X) the collection of non-empty closed

bounded subsets of X. For A, B Î CB(X) and x Î X, suppose that

D(x,A) = inf
a∈A

d(x, a) and H(A,B, ) = max{sup
a∈A

D(a,B), sup
b∈B

D(b,A)}.

Such a mapping H is called a Hausdorff metric on CB(X) induced by d.

Definition 1.1. An element x Î X is said to be a fixed point of a multi-valued map-

ping T: X ® CB(X) if and only if x Î Tx.

In 1969, Nadler [1] extended the famous Banach Contraction Principle from single-

valued mapping to multi-valued mapping and proved the following fixed point theo-

rem for the multi-valued contraction.

Theorem 1.1. Let (X, d) be a complete metric space and let T be a mapping from X

into CB(X). Assume that there exists c Î [0,1) such that H(Tx, Ty) ≤ cd(x, y) for all x,y

Î X. Then, T has a fixed point.

The existence of fixed points for various multi-valued contractive mappings has been

studied by many authors under different conditions. In 1989, Mizoguchi and Takahashi

[2] proved the following interesting fixed point theorem for a weak contraction.
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Theorem 1.2. Let (X,d) be a complete metric space and let T be a mapping from X

into CB(X). Assume that H (Tx, Ty) ≤ a(d(x,y)) d(x,y) for all x,y Î X, where a is a

function from [0,∞) into [0,1) satisfying the condition limsups→t+α(s) < 1 for all t Î [0,

∞). Then, T has a fixed point.

Let CL(X) := {A ⊂ X|A �= �, Ā = A} , where Ā denotes the closure of A in the metric

space (X, d). In this context, Ćirić [3] proved the following interesting theorem.

Theorem 1.3. (See [3]) Let (X,d) be a complete metric space and let T be a mapping

from X into CL(X). Let f: X ® ℝ be the function defined by f(x) = d(x, Tx) for all x Î
X. Suppose that f is lower semi-continuous and that there exists a function j: [0, +∞)

® [a, 1), 0 <a < 1, satisfying

lim sup
r→t+

φ(r) < 1 for each t ∈ [0, +∞). (1:1)

Assume that for any x Î X there is y Î Tx satisfying the following two conditions:√
φ(f (x))d(x, y) ≤ f (x) (1:2)

such that

f (y) ≤ φ(f (x))d(x, y). (1:3)

Then, there exists z Î X such that z Î Tz.

Definition 1.2. [4]Let X be a non-empty set and F: X × X ® X be a given mapping.

An element (x, y) Î X × X is said to be a coupled fixed point of the mapping F if F (x,

y) = x and F(y, x) = y.

Definition 1.3. [5]Let (x,y) Î X × X, F: X × X ® X and g: X ® X. We say that (x,y)

is a coupled coincidence point of F and g if F(x,y) = gx and F(y, x) = gy for x,y Î X.

Definition 1.4. A function f: X × X ® ℝ is called lower semi-continuous if and only if

for any sequence {xn} ⊂ X, {yn} ⊂ X and (x,y) Î X × X, we have

lim
n→∞(xn, yn) = (x, y) ⇒ f (x, y) ≤ lim inf

n→∞ f (xn, yn).

Let (X, d) be a metric space endowed with a partial order and G: X ® X be a given

mapping. We define the set Δ ⊂ X × X by

� := {(x, y) ∈ X × X|G(x) � G(y)}.

In [6], Samet and Vetro introduced the binary relation R on CL(X) defined by

ARB ⇔ A × B ⊆ �,

where A, B Î CL(X).

Definition 1.5. Let F: X × X ® CL(X) be a given mapping. We say that F is a

Δ-symmetric mapping if and only if (x,y) Î Δ ⇒ F(x,y)RF(y,x).

Example 1.1. Suppose that X = [0,1], endowed with the usual order ≤. Let G: [0,1] ®
[0,1] be the mapping defined by G(x) = M for all x Î [0,1], where M is a constant in

[0,1]. Then, Δ = [0,1] × [0,1] and F is a Δ-symmetric mapping.

Definition 1.6. [6]Let F: X × X ® CL(X) be a given mapping. We say that (x,y) Î X

× X is a coupled fixed point of F if and only if x Î F(x,y) and y Î F(y,x).
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Definition 1.7. Let F: X × X ® CL(X) be a given mapping and let g: X ® X. We say

that (x,y) Î X × X is a coupled coincidence point of F and g if and only if gx Î F(x,y)

and gy Î F(y,x).

In [6], Samet and Vetro proved the following coupled fixed point version of Theorem

1.3.

Theorem 1.4. Let (X, d) be a complete metric space endowed with a partial order ≼.
We assume that � �= ∅ , i.e., there exists (x0,y0) Î Δ. Let F: X × X ® CL(X) be a Δ-sym-

metric mapping. Suppose that the function f: X × X ® [0,+∞) defined by

f (x, y) := D(x, F(x, y)) +D(y, F(y, x)) for all x, y ∈ X

is lower semi-continuous and that there exists a function j: [0, ∞) ® [a, 1), 0 <a < 1,

satisfying

lim sup
r→t+

φ(r) < 1 for each t ∈ [0, +∞).

Assume that for any (x,y) Î Δ there exist u Î F(x,y) and v Î F(y,x) satisfying√
φ(f (x, y))[d(x, u) + d(y, v)] ≤ f (x, y)

such that

f (u, v) ≤ φ(f (x, y))[d(x, u) + d(y, v)].

Then, F admits a coupled fixed point, i.e., there exists z = (z1, z2) Î X × X such that

z1 Î F(z1, z2) and z2 Î F(z2, z1).

In 2006, Bhaskar and Lakshmikantham [4] introduced the notion of a coupled fixed

point and established some coupled fixed point theorems in partially ordered metric

spaces. They have discussed the existence and uniqueness of a solution for a periodic

boundary value problem. Lakshmikantham and Ćirić [5] proved coupled coincidence

and coupled common fixed point theorems for nonlinear contractive mappings in par-

tially ordered complete metric spaces using mixed g-monotone property. For more

details on coupled fixed point theory, we refer the reader to [7-12] and the references

therein. Here we study the existence of coupled coincidences for multi-valued non-

linear contractions using two different approaches, first is based on Δ-symmetric prop-

erty recently studied in [6] and second one is based on mixed g-monotone property

studied by Lakshmikantham and Ćirić [5]. The theorems presented extend certain

results due to Ćirić [3], Samet and Vetro [6] and many others. We support the results

by establishing an illustrative example.

2. Coupled coincidences by Δ-symmetric property
Following is the main result of this section which generalizes the above mentioned

results of Ćirić, and Samet and Vetro.

Theorem 2.1. Let (X,d) be a metric space endowed with a partial order ≼ and

� �= ∅ . Suppose that F: X × X ® CL(X) is a Δ-symmetric mapping, g: X ® X is contin-

uous, gX is complete, the function f: g(X) × g(X) ® [0, +∞) defined by

f (gx, gy) := D(gx, F(x, y)) +D(gy, F(y, x)) for all x, y ∈ X
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is lower semi-continuous and that there exists a function j: [0, ∞) ® [a, 1), 0 <a < 1,

satisfying

lim sup
r→t+

φ(r) < 1 for each t ∈ [0, +∞). (2:1)

Assume that for any (x,y) Î Δ there exist gu Î F(x,y) and gv Î F(y,x) satisfying√
φ(f (gx, gy))[d(gx, gu) + d(gy, gv)] ≤ f (gx, gy) (2:2)

such that

f (gu, gv) ≤ φ(f (gx, gy))[d(gx, gu) + d(gy, gv)]. (2:3)

Then, F and g have a coupled coincidence point, i.e., there exists gz = (gz1, gz2) Î X ×

X such that gz1 Î F(z1, z2) and gz2 Î F(z2, z1).

Proof. Since by the definition of j we have j(f(x,y)) < 1 for each (x,y) Î X × X, it

follows that for any (x,y) Î X × X there exist gu Î F(x,y) and gv Î F(y,x) such that√
φ(f (gx, gy))d(gx, gu) ≤ D(gx, F(x, y))

and √
φ(f (gx, gy))d(gy, gv) ≤ D(gy, F(y, x)).

Hence, for each (x,y) Î X × X, there exist gu Î F(x,y) and gv Î F(y,x) satisfying (2.2).

Let (x0, y0) Î Δ be arbitrary and fixed. By (2.2) and (2.3), we can choose gx1 Î F(x0,

y0) and gy1 Î F(y0, x0) such that√
φ(f (gx0, gy0))[d(gx0, gx1) + d(gy0, gy1)] ≤ f (gx0, gy0) (2:4)

and

f (gx1, gy1) ≤ φ(f (gx0, gy0))[d(gx0, gx1) + d(gy0, gy1)]. (2:5)

From (2.4) and (2.5), we can get

f (gx1, gy1) ≤ φ(f (gx0, gy0))[d(gx0, gx1) + d(gy0, gy1)]

=
√

φ(f (gx0, gy0)){
√

φ(f (gx0, gy0))[d(gx0, gx1) + d(gy0, gy1)]}
≤

√
φ(f (gx0, gy0))f (gx0, gy0).

Thus,

f (gx1, gy1) ≤
√

φ(f (gx0, gy0))f (gx0, gy0). (2:6)

Now, since F is a Δ-symmetric mapping and (x0, y0) Î Δ, we have

F(x0, y0)RF(y0, x0) ⇒ (x1, y1) ∈ �.

Also, by (2.2) and (2.3), we can choose gx2 Î F(x1, y1) and gy2 Î F(y1, x1) such that√
φ(f (gx1, gy1))[d(gx1, gx2) + d(gy1, gy2)] ≤ f (gx1, gy1)

and

f (gx2, gy2) ≤ φ(f (gx1, gy1))[d(gx1, gx2) + d(gy1, gy2)].
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Hence, we get

f (gx2gy2) ≤
√

φ(f (gx1, gy1))f (gx1, gy1),

with (x2, y2) Î Δ.

Continuing this process we can choose {gxn} ⊂ X and {gyn} ⊂ X such that for all n Î
N, we have

(xn, yn) ∈ �, gxn+1 ∈ F(xn, yn), gyn+1 ∈ F(yn, xn), (2:7)

√
φ(f (gxn, gyn))[d(gxn, gxx+1) + d(gyn, gyn+1)] ≤ f (gxn, gyn), (2:8)

and

f (gxn+1, gyn+1) ≤
√

φ(f (gxn, gyn))f (gxn, gyn). (2:9)

Now, we shall show that f(gxn, gyn) ® 0 as n ® ∞. We shall assume that f(gxn, gyn) >

0 for all n Î N, since if f(gxn, gyn) = 0 for some n Î N, then we get D(gxn, F(xn, yn)) =

0 which implies that gxn ∈ F(xn, yn) = F(xn, yn) and D (gyn, F(yn, xn)) = 0 which implies

that gyn Î F(yn, xn). Hence, in this case, (xn, yn) is a coupled coincidence point of F and

g and the assertion of the theorem is proved.

From (2.9) and j(t) < 1, we deduce that {f(gxn, gyn)} is a strictly decreasing sequence

of positive real numbers. Therefore, there is some δ ≥ 0 such that

lim
n→∞ f (gxn, gyn) = δ.

Now, we will prove that δ = 0. Suppose that this is not the case; taking the limit on

both sides of (2.9) and having in mind the assumption (2.1), we have

δ ≤ lim sup
f (gxn,gyn)→δ+

√
φ(f (gxn, gyn))δ < δ,

a contradiction. Thus, δ = 0, that is,

lim
n→∞ f (gxn, gyn) = 0. (2:10)

Now, let us prove that {gxn} and {gyn} are Cauchy sequences in (X, d). Suppose that

α = lim sup
f (gxn,gyn)→0+

√
φ(f (gxn, gyn)).

Then, by assumption (2.1), we have a < 1. Let q be such that a <q < 1. Then, there

is some n0 Î N such that√
φ(f (gxn, gyn)) < q for each n ≥ n0.

Thus, from (2.9), we get

f (gxn+1, gyn+1) ≤ qf (gxn, gyn) for each n ≥ n0.

Hence, by induction,

f (gxn+1, gyn+1) ≤ qn+1−n0 f (gxn0, gyn0 ) for each n ≥ n0. (2:11)
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Since j (t) ≥ a > 0 for all t ≥ 0, from (2.8) and (2.11), we obtain

d(gxn, gxn+1) + d(gyn, gyn+1) ≤ 1√
a
qn−n0 f (gxn0 , gyn0 ) for each n ≥ n0. (2:12)

From (2.12) and since q < 1, we conclude that {gxn} and {gyn} are Cauchy sequences

in (X,d).

Now, since gX is complete, there is a w = (w1, w2) Î gX × gX such that

lim
n→∞ gxn = w1 = gz1 and lim

n→∞ gyn = w2 = gz2 (2:13)

for some z1, z2 in X. We now show that z = (z1, z2) is a coupled coincidence point of

F and g. Since by assumption f is lower semi-continuous so from (2.10), we get

0 ≤ f (gz1, gz2) = D(gz1, F(z1, z2)) +D(gz2, F(z2, z1)) ≤ lim inf
n→∞ f (gxn, gyn) = 0.

Hence,

D(gz1, F(z1, z2)) = D(gz2, F(z2, z1)) = 0,

which implies that gz1 Î F(z1, z2) and gz2 Î F(z2, z1), i.e., z = (z1, z2) is a coupled

coincidence point of F and g. This completes the proof.

Now, we prove the following theorem.

Theorem 2.2. Let (X, d) be a metric space endowed with a partial order ≼ and

� �= ∅ . Suppose that F: X × X ® CL(X) is a Δ-symmetric mapping, g: X ® X is contin-

uous and gX is complete. Suppose that the function f: gX × gX ® [0,+∞) defined in

Theorem 2.1 is lower semi-continuous and that there exists a function j: [0, +∞) ® [a,

1), 0 <a < 1, satisfying

lim sup
r→t+

φ(r) < 1 for each t ∈ [0,∞). (2:14)

Assume that for any (x,y) Î Δ, there exist gu Î F(x,y) and gv Î F(y,x) satisfying√
φ(d(gx, gu) + d(gy, gv))[d(gx, gu) + d(gy, gv)] ≤ D(gx, F(x, y)) +D(gy, F(y, x)) (2:15)

such that

D(gu, F(u, v)) +D(gv, F(v, u)) ≤ φ(d(gx, gu) + d(gy, gv))[d(gx, gu) + d(gy, gv)]. (2:16)

Then, F and g have a coupled coincidence point, i.e., there exists z = (z1, z2) Î X × X

such that gz1 Î F(z1, z2) and gz2 Î F(z2, z1).

Proof. Replacing j (f(x,y)) with j (d(gx, gu) + d (gy, gv)) and following the lines in

the proof of Theorem 2.1, one can construct iterative sequences {xn} ⊂ X and {yn} ⊂ X

such that for all n Î N, we have

(xn, yn) ∈ �, gxn+1 ∈ F(xn, yn), gyn+1 ∈ F(yn, xn), (2:17)

√
φ(d(gxn, gxn+1) + d(gyn, gyn+1))[d(gxn, gxn+1) + d(gyn, gyn+1)]

≤ D(gxn, F(xn, yn)) +D(gyn, F(yn, xn))
(2:18)
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and

D(gxn+1, F(xn+1, yn+1)) +D(gyn+1, F(yn+1, xn+1))

≤
√

ϕ(d(gxn, gxn+1) + d(gyn, gyn+1))[D(gxn, F(xn, yn)) +D(gyn, F(yn, xn))]
(2:19)

for all n ≥ 0. Again, following the lines of the proof of Theorem 2.1, we conclude

that {D (gxn, F(xn, yn)) + D(gyn, F(yn, xn))} is a strictly decreasing sequence of positive

real numbers. Therefore, there is some δ ≥ 0 such that

lim
n→+∞{D(gxn, F(xn, yn)) +D(gyn, F(yn, xn)) = δ. (2:20)

Since in our assumptions there appears j (d(gxn, gxn+1) + d(gyn, gyn+1)), we need to

prove that {d(gxn, gxn+1) + d (gyn, gyn+1)} admits a subsequence converging to a certain

h+ for some h ≥ 0. Since � (t) ≥ a > 0 for all t ≥ 0, from (2.18) we obtain

d(gxn, gxn+1) + d(gyn, gyn+1) ≤ 1√
a
[D(gxn, F(xn, yn)) +D(gyn, F(yn, xn))]. (2:21)

From (2.20) and (2.21), we conclude that the sequence {d(gxn, gxn+1)+d(gyn, gyn+1)} is

bounded. Therefore, there is some θ ≥ 0 such that

lim inf
n→+∞ {d(gxn, gxn+1) + d(gyn, gyn+1)} = θ . (2:22)

Since gxn+1 Î F(xn, yn) and gyn+1 Î F(yn, xn), it follows that

d(gxn, gxn+1) + d(gyn, gyn+1) ≥ D(gxn, F(xn, yn)) +D(gyn, F(yn, xn))

for each n ≥ 0. This implies that θ ≥ δ. Now, we shall show that θ = δ. If we assume

that δ = 0, then from (2.20) and (2.21) we have

lim
n→+∞{d(gxn, gxn+1) + d(gyn, gyn+1)} = 0.

Thus, if δ = 0, then θ = δ. Suppose now that δ > 0 and suppose, to the contrary, that

θ >δ. Then, θ - δ > 0 and so from (2.20) and (2.22) there is a positive integer n0 such

that

D(gxn, F(xn, yn)) +D(gyn, F(yn, xn)) < δ +
θ − δ

4
(2:23)

and

θ − θ − δ

4
< d(xn, xn+1) + d(yn, yn+1) (2:24)

for all n ≥ n0. Then, combining (2.18), (2.23) and (2.24) we get

√
ϕ(d(gxn, gxn+1) + d(gyn, gyn+1))

(
θ − θ − δ

4

)

<
√

ϕ(d(gxn, gxn+1) + d(gyn, gyn+1))[d(gxn, gxn+1) + d(gyn, gyn+1)]

≤ D(gxn, F(xn, yn)) +D(gyn, F(yn, xn))

< δ +
θ − δ

4
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for all n ≥ n0. Hence, we get

√
ϕ(d(gxn, gxn+1) + d(gyn, gyn+1)) ≤ θ + 3δ

3θ + δ
(2:25)

for all n ≥ n0. Set h =
θ + 3δ

3θ + δ
< 1 . Now, from (2.19) and (2.25), it follows that

D(gxn+1, F(xn+1, yn+1))+D(gyn+1, F(yn+1, xn+1)) ≤ h[D(gxn, F(xn, yn))+D(gyn, F(yn, xn))]

for all n ≥ n0. Finally, since we assume that δ > 0 and as h < 1, proceeding by induc-

tion and combining the above inequalities, it follows that

δ ≤ D(gxn0+k0 , F(xn0+k0 , yn0+k0 )) +D(gyn0+k0 , F(yn0+k0 , xn0+k0))

≤ hk0D(gxn0 , F(xn0 , yn0 )) +D(gyn0 , F(yn0 , xn0 )) < δ

for a positive integer k0, which is a contradiction to the assumption θ >δ and so we

must have θ = δ. Now, we shall show that θ = 0. Since

θ = δ ≤ D(gxn, F(xn, yn)) +D(gyn, F(yn, xn)) ≤ d(gxn, gxn+1) + d(gyn, gyn+1),

so we can read (2.22) as

lim inf
n→+∞ {d(gxn, gxn+1) + d(gyn, gyn+1)} = θ+.

Thus, there exists a subsequence {d(gxnk , gxnk+1) + d(gynk , gynk+1)} such that

lim
k→+∞

{d(gxnk , gxnk+1) + d(gynk , gynk+1)} = θ+.

Now, by (2.14), we have

lim sup
(d(gxnk ,gxnk+1)+d(gynk ,gynk+1))→θ+

√
ϕ(d(gxnk , gxnk+1) + d(gynk , gynk+1)) < 1. (2:26)

From (2.19),

D(gxnk+1, F(xnk+1, ynk+1)) +D(gynk+1, F(ynk+1, xnk+1))

≤
√

ϕ(d(gxnk , gxnk+1) + d(gynk , gynk+1))[D(gxnk , F(xnk , ynk)) +D(gynk , F(ynk , xnk))].

Taking the limit as k ® +∞ and using (2.20), we get

δ = lim sup
k→+∞

{D(gxnk+1, F(xnk+1, ynk+1)) +D(gynk+1, F(ynk+1, xnk+1))}

≤
(
lim sup
k→+∞

√
ϕ(d(gxnk , gxnk+1) + d(gynk , gynk+1))

)
(lim sup

k→+∞
{D(gxnk , F(xnk , ynk)) +D(gynk , F(ynk , xnk))})

=

(
lim sup

(d(gxnk ,gxnk+1)+d(gynk ,gynk+1))→θ+

√
ϕ(d(gxnk , gxnk+1) + d(gynk , gynk+1))

)
δ.

From the last inequality, if we suppose that δ > 0, we get

1 ≤ lim sup
(d(gxnk ,gxnk+1)+d(gynk ,gynk+1))→θ+

√
ϕ(d(gxnk , gxnk+1) + d(gynk , gynk+1)),
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a contradiction with (2.26). Thus, δ = 0. Then, from (2.20) and (2.21) we have

α = lim sup
(d(gxn,gxn+1)+d(gyn,gyn+1))→0+

√
ϕ(d(gxn, gxn+1) + d(gyn, gyn+1)) < 1.

Once again, proceeding as in the proof of Theorem 2.1, one can prove that {gxn} and

{gyn} are Cauchy sequences in gX and that z = (z1, z2) Î X × X is a coupled coinci-

dence point of F, g, i.e.

gz1 ∈ F(z1, z2) and gz2 ∈ F(z2, z1).

Example 2.3. Suppose that X = [0,1], equipped with the usual metric d: X × X ® [0,

+ ∞), and G: [0,1] ® [0,1] is the mapping defined by

G(x) = M for all x ∈ [0, 1],

where M is a constant in [0,1]. Let F: X × X ® CL(X) be defined as

F(x, y) =
{

x2
4 if y ∈ [0, 1532 ) ∪ ( 1532 , 1],
{ 1596 , 15 } if y = 15

32 .

Then, Δ = [0,1] × [0,1] and F is a Δ-symmetric mapping. Define now �: [0, +∞) ®
[0,1) by

ϕ(t) =
{ 11

12 t if t ∈ [0, 23 ],
11
18 if t ∈ ( 23 , +∞).

Let g: [0,1] ® [0,1] be defined as gx = x2. Now, we shall show that F(x, y) satisfies all

the assumptions of Theorem 2.2. Let

f (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

√
x +

√
y − 1

4 (x + y) if x, y ∈ [0, 1532 ) ∪ ( 1532 , 1],√
x − 1

4x +
43
160 if x ∈ [0, 1532 ) ∪ ( 1532 , 1] and y = 15

32 ,√
y − 1

4y +
43
160 if y ∈ [0, 1532 ) ∪ ( 1532 , 1] and x = 15

32 ,
43
80 if x = y = 15

32 .

It is easy to see that the function

f (gx, gy) =

⎧⎪⎪⎨
⎪⎪⎩
x + y − 1

4 (x
2 + y2) if x, y ∈ [0, 1532 ) ∪ ( 1532 , 1],

x − 1
4x

2 + 43
160 if x ∈ [0, 1532 ) ∪ ( 1532 , 1] and y = 15

32 ,
y − 1

4y
2 + 43

160 if y ∈ [0, 1532) ∪ ( 1532 , 1] and x = 15
32 ,

43
80 if x = y = 15

32

is lower semi-continuous. Therefore, for all x, y Î [0,1] with x, y �= 15
32 , there exist

gu ∈ F(x, y) = { x24 } and gv ∈ F(y, x) = { y24 } such that

D(gu, F(u, v)) +D(gv, F(v, u)) =
x2

4
− x4

64
+
y2

4
− y4

64

=
1
4

[(
x +

x2

4

)(
x − x2

4

)
+

(
y +

y2

4

) (
y − y2

4

)]

≤ 1
4

[(
x +

x2

4

)
d(gx, gu) +

(
y +

y2

4

)
d(gy, gv)

]

≤ 1
2
max

{
x +

x2

4
, y +

y2

4

}
[d(gx, gu) + d(gy, gv)]

<
11
12

max
{(

x − x2

4

)
,
(
y − y2

4

)}
[d(gx, gu) + d(gy, gv)]

≤ ϕ(d(gx, gu) + d(gy, gv))[d(gx, gu) + d(gy, gv)].
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Thus, for x, y Î [0,1] with x, y �= 15
32 , the conditions (2.15) and (2.16) are satisfied. Fol-

lowing similar arguments, one can easily show that conditions (2.15) and (2.16) are

also satisfied for x ∈ [0, 1532 ) ∪ ( 1532 , 1] and y = 15
32 . Finally, for x = y = 15

32 , if we assume

that gu = gv = 15
96 , it follows that d(gx, gu) + d(gy, gv) = 15

24 .

Consequently, we get

√
ϕ(d(gx, gu) + d(gy, gv))[d(gx, gu) + d(gy, gv)] =

√
11
24

· 15
24

· 15
24

<
43
80

= D(gx, F(x, y)) +D(gy, F(y, x))

and

D(gu, F(u, v)) +D(gv, F(v, u)) = 2

∣∣∣∣∣1596 − 1
4

(
15
96

)2
∣∣∣∣∣

<
11
12

· 15
24

· 15
24

= ϕ(d(gx, gu) + d(gy, gv))[d(gx, gu) + d(gy, gv)].

Thus, we conclude that all the conditions of Theorem 2.2 are satisfied, and F, g

admits a coupled coincidence point z = (0, 0).

3. Coupled coincidences by mixed g-monotone property
Recently, there have been exciting developments in the field of existence of fixed

points in partially ordered metric spaces (cf. [13-24]). Using the concept of commuting

maps and mixed g-monotone property, Lakshmikantham and Ćirić in [5] established

the existence of coupled coincidence point results to generalize the results of Bhaskar

and Lakshmikantham [4]. Choudhury and Kundu generalized these results to compati-

ble maps. In this section, we shall extend the concepts of commuting, compatible

maps and mixed g-monotone property to the case when F is multi-valued map and

prove the extension of the above mentioned results.

Analogous with mixed monotone property, Lakshmikantham and Ćirić [5] intro-

duced the following concept of a mixed g-monotone property.

Definition 3.1. Let (X, ≼) be a partially ordered set and F: X × X ® X and g: X ®
X. We say F has the mixed g-monotone property if F is monotone g-non-decreasing in

its first argument and is monotone g-non-increasing in its second argument, that is, for

any x,y Î X,

x1, x2 ∈ X, g(x1) � g(x2) implies F(x1, y) � F(x2, y) (3:1)

and

y1, y2 ∈ X, g(y1) � g(y2) implies F(x, y1) � F(x, y2). (3:2)

Definition 3.2. Let (X, ≼) be a partially ordered set, F: X × X ® CL(X) and let g: X

® X be a mapping. We say that the mapping F has the mixed g-monotone property if,

for all x1, x2, y1, y2 Î X with gx1 ≼ gx2 and gy1 ≽ gy2, we get for all gu1 Î F(x1, y1)

there exists gu2 Î F(x2, y2) such that gu1 ≼ gu2 and for all gv1 Î F(y1,x1) there exists

gv2 Î F(y2, x2) such that gv1 ≽ z gv2.
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Definition 3.3. The mapping F: X × X ® CB(X) and g: X ® X are said to be compa-

tible if

lim
n→∞H(g(F(xn, yn)), F(gxn, gyn)) = 0

and

lim
n→∞H(g(F(yn, xn)), F(gyn, gxn)) = 0,

whenever {xn} and {yn} are sequences in X, such that x = limn®∞ gxn Î limn®∞ F(xn,

yn) and y = limn®∞ gyn Î limn®∞ F(yn, xn), for all x, y Î X are satisfied.

Definition 3.4. The mapping F: X × X ® CB(X) and g: X ® X are said to be com-

muting if gF(x, y) ⊆ F(gx, gy) for all x, y Î X.

Lemma 3.1. [1]If A,B Î CB (X) with H (A, B) < �, then for each a Î A there exists an

element b Î B such that d(a, b) < �.

Lemma 3.2. [1]Let {An} be a sequence in CB(X) and limn®∞ H (An, A) = 0 for A Î
CB (X). If xn Î An and limn®∞ d(xn, x) = 0, then x Î A.

Let (X, ≼) be a partially ordered set and d be a metric on X such that (X, d) is a

complete metric space. We define the partial order on the product space X × X as:

for (u,v),(x,y) Î X × X, (u, v) ≼ (x, y) if and only if u ≼ x, v ≽ y.

The product metric on X × X is defined as

d((x1, y1), (x2, y2)) := d(x1, x2) + d(y1, y2) for all xi, yi ∈ X(i = 1, 2).

For notational convenience, we use the same symbol d for the product metric as well

as for the metric on X.

We begin with the following result that gives the existence of a coupled coincidence

point for compatible maps F and g in partially ordered metric spaces, where F is the

multi-valued mappings.

Theorem 3.1. Let F: X × X ® CB(X), g: X ® X be such that:

(1) there exists � Î (0,1) with

H(F(x, y), F(u, v)) ≤ k
2
d((gx, gy), (gu, gv)) for all (gx, gy) � (gu, gv);

(2) if gx1 ≼ gx2, gy2 ≼ gy1, xi, yi Î X(i = 1,2), then for all gu1 Î F(x1, y1) there exists

gu2 Î F(x2, y2) with gu1 ≼ gu2 and for all gv1 Î F(y1, x1) there exists gv2 Î F(y2, x2)

with gv2 ≼ gv1 provided d((gu1, gv1), (gu2, gv2)) < 1; i.e. F has the mixed g-monotone

property, provided d((gu1, gv1), (gu2, gv2)) < 1;

(3) there exists x0, y0 Î X, and some gx1 Î F(x0, y0), gy1 Î F(y0, x0) with gx0 ≼ gx1,

gy0 ≽ gy1 such that d((gx0, gy0), (gx1, gy1)) < 1 - �, where � Î (0,1);

(4) if a non-decreasing sequence {xn} ® x, then xn ≤ x for all n and if a non-increas-

ing sequence {yn} ® y, then y ≤ yn for all n and gX is complete.

Then, F and g have a coupled coincidence point.
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Proof. Let x0, y0 Î X then by (3) there exists gx1 Î F(x0, y0), gy1 Î F(y0, x0) with gx0
≼ gx1, gy0 ≽ gy1 such that

d((gx0, gy0), (gx1, gy1)) < 1 − κ. (3:3)

Since (gx0, gy0) ≼ (gx1, gy1) using (1) and (3.3), we have

H(F(x0, y0), F(x1, y1)) ≤ κ

2
d((gx0, gy0), (gx1, gy1)) <

κ

2
(1 − κ)

and similarly

H(F(y0, x0), F(y1, x1)) ≤ κ

2
(1 − κ).

Using (2) and Lemma 3.1, we have the existence of gx2 Î F(x1, y1), gy2 Î F (y1, x1)

with x1 ≼ x2 and y1 ≽ y2 such that

d(gx1, gx2) ≤ κ

2
(1 − κ) (3:4)

and

d(gy1, gy2) ≤ κ

2
(1 − κ). (3:5)

From (3.4) and (3.5),

d((gx1, gy1), (gx2, gy2)) ≤ κ(1 − κ). (3:6)

Again by (1) and (3.6), we have

H(F(x1, y1), F(x2, y2)) ≤ κ2

2
(1 − κ)

and

D(F(y1, x1), F(y2, x2)) ≤ κ2

2
(1 − κ).

From Lemma 3.1 and (2), we have the existence of gx3 Î F(x2, y2), gy3 Î F (y2, x2)

with gx2 ≼ gx3, gy2 ≽ gy3 such that

d(gx2, gx3) ≤ κ2

2
(1 − κ)

and

d(gy2, gy3) ≤ κ2

2
(1 − κ).

It follows that

d((gx2, gy2), (gx3, gy3)) ≤ κ2(1 − κ).

Continuing in this way we obtain gxn+1 Î F (xn, yn), gyn+1 Î F (yn, xn) with
gxn � gxn+1, gyn � gyn1 such that

Hussain and Alotaibi Fixed Point Theory and Applications 2011, 2011:82
http://www.fixedpointtheoryandapplications.com/content/2011/1/82

Page 12 of 15



d(gxn, gxn+1) ≤ κn

2
(1 − κ)

and

d(gyn, gyn+1) ≤ κn

2
(1 − κ).

Thus,

d((gxn, gyn), (gxn+1, gyn+1)) ≤ κn(1 − κ). (3:7)

Next, we will show that {gxn} is a Cauchy sequence in X. Let m >n. Then,

d(gxn, gxm) ≤ d(gxn, gxn+1) + d(gxn+1, gxn+2) + d(gxn+2, gxn+3) + · · · + d(gxm−1, gxm)

≤ [κn + κn+1 + κn+2 + · · · + κm−1]
(1 − κ)

2

= κn[1 + κ + κ2 + · · · + κm−n−1]
(1 − κ)

2

= κn
[
1 − κm−n

1 − κ

]
(1 − κ)

2

=
κn

2
(1 − κm−n) <

κn

2
,

because � Î (0,1), 1 - �m-n < 1. Therefore, d(gxn, gxm) ® 0 as n ® ∞ implies that

{gxn} is a Cauchy sequence. Similarly, we can show that {gyn} is also a Cauchy sequence

in X. Since gX is complete, there exists x, y Î X such that gxn ® gx and gyn ® gy as n

® ∞. Finally, we have to show that gx Î F(x, y) and gy Î F(y, x).

Since {gxn} is a non-decreasing sequence and {gyn} is a non-increasing sequence in X

such that gxn ® x and gyn ® y as n ® ∞, therefore we have gxn ≼ x and gyn ≽ y for

all n. As n ® ∞, (1) implies that

H(F(xn, yn), F(x, y)) ≤ κ

2
d((gxn, gyn), (gx, gy)) → 0.

Since gxn+1 Î F(xn, yn) and limn®∞ d(gxn+1, gx) = 0, it follows using Lemma 3.2 that

gx Î F(x, y). Again by (1),

H(F(yn, xn), F(y, x)) ≤ κ

2
d((gyn, gxn), (gy, gx)) → 0.

Since gyn+1 Î F(yn, xn) and limn®∞ d(gyn+1, gy) = 0, it follows using Lemma 3.2 that

gy Î F(y, x).

Theorem 3.2. Let F: X × X ® CB(X), g: X ® X be such that conditions (1)-(3) of

Theorem 3.1 hold. Let X be complete, F and g be continuous and compatible. Then, F

and g have a coupled coincidence point.

Proof. As in the proof of Theorem 3.1, we obtain the Cauchy sequences {gxn} and

{gyn} in X. Since X is complete, there exists x, y Î X such that gxn ® x and gyn ® y as

n ® ∞. Finally, we have to show that gx Î F(x, y) and gy Î F(y, x). Since the mapping

F: X × X ® CB (X) and g: X ® X are compatible, we have

lim
n→∞H(g(F(xn, yn)), F(gxn, gyn)) = 0,
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because {xn} is a sequence in X, such that x = limn®∞ gxn+1 Î limn®∞ F(xn, yn) is

satisfied. For all n ≥ 0, we have

D(gx, F(gxn, gyn)) ≤ D(gx, gF(xn, yn)) +H(gF(xn, yn), F(gxn, gyn)).

Taking the limit as n ® ∞, and using the fact that g and F are continuous, we get, D

(gx, F(x, y)) = 0, which implies that gx Î F (x, y).

Similarly, since the mapping F and g are compatible, we have

lim
n→∞H(g(F(yn, xn)), F(gyn, gxn)) = 0,

because {yn} is a sequence in X, such that y = limn®∞ gyn+1 Î limn®∞ F(yn, xn) is

satisfied. For all n ≥ 0, we have

D(gy, F(gyn, gxn)) ≤ D(gy, gF(yn, xn)) +H(gF(yn, xn), F(gyn, gxn)).

Taking the limit as n ® ∞, and using the fact that g and F are continuous, we get D

(gy, F(y, x)) = 0, which implies that gy Î F(y, x).

As commuting maps are compatible, we obtain the following;

Theorem 3.3. Let F: X × X ® CB(X), g: X ® X be such that conditions (1)-(3) of

Theorem 3.1 hold. Let X be complete, F and g be continuous and commuting. Then, F

and g have a coupled coincidence point.
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