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Abstract
Recently, Iemoto and Takahashi considered a weak convergence iterative scheme for
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1 Introduction and preliminaries
Let H be a Hilbert space and C be a nonempty closed convex subset of H . Let T be a
nonlinear mapping of C into itself. We use F(T) and PC to denote the set of fixed points
of T and the metric projection from H onto C, respectively.
Recall that T is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ (.)

for all x, y ∈ C.
For approximating the fixed point of a nonexpansive mapping in a Hilbert space, Mann

[] in  introduced the famous iterative scheme as follows:

∀x ∈ C, xn+ = ( – αn)xn + αnTxn, ∀n≥ , (.)

where T is a nonexpansive mapping of C into itself and {αn} is a sequence in (, ). It is
well known that {xn} defined in (.) converges weakly to a fixed point of T .
Attempts tomodify the normalMann iterationmethod (.) for nonexpansivemappings

so that strong convergence is guaranteed have recently been made; see, e.g., [–].
Let T be a mapping from C into itself. Then T is called nonspreading [] if

‖Tx – Ty‖ ≤ ‖Tx – y‖ + ‖x – Ty‖

for all x, y ∈ C. A mapping T : C → C is called quasi-nonexpansive if F(T) �= ∅ and ‖Tx –
y‖ ≤ ‖x – y‖ for all x ∈ C and y ∈ F(T). If T is a nonspreading mapping from C into itself
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and F(T) is nonempty, thenT is quasi-nonexpansive. Further, we know that the set of fixed
points of each quasi-nonexpansive mapping is closed and convex; see [].
In [], by using Moudafi’s iterative scheme [], Iemoto and Takahashi considered the

following weak convergence theorem.

Theorem IT ([]) Let H be a Hilbert space, and let C be a nonempty closed convex subset
of H . Let S be a nonspreadingmapping of C into itself, and let T be a nonexpansivemapping
of C into itself such that F(S)∩ F(T) �= ∅. Define a sequence {xn} as follows:

⎧⎨
⎩x ∈ C,

xn+ = ( – αn)xn + αn{βnSxn + ( – βn)Txn}
(.)

for all n ∈N , where {αn}, {βn} ⊂ [, ]. Then the following hold:
(i) If lim infn→∞ αn( – αn) >  and

∑∞
n=( – βn) < ∞, then {xn} converges weakly to

v ∈ F(S);
(ii) If

∑∞
i= αn( – αn) = ∞ and

∑∞
n= βn < ∞, then {xn} converges weakly to v ∈ F(T);

(iii) If lim infn→∞ αn( – αn) >  and lim infn→∞ βn( – βn) > , then {xn} converges
weakly to v ∈ F(S)∩ F(T).

In this paper, we modify (.) by a hybrid iterative scheme and obtain the strong conver-
gence theorems for a family of nonspreading mappings and a nonexpansive mapping in a
Hilbert space.
Let E be a Banach space and K be a nonempty closed convex subset of E. Let {Tn} : K →

K be a family of mappings. Then {Tn} is said to satisfy the AKTT-condition [] if for each
bounded subset B of K , one has

∞∑
n=

sup
{‖Tn+z – Tnz‖ : z ∈ B

}
<∞.

The following is an important result on a family of mappings {Tn}∞n= satisfying the
AKTT-condition.

Lemma . ([]) Let K be a nonempty and closed subset of a Banach space E, and let
{Tn}∞n= be a family ofmappings of K into itself which satisfies theAKTT-condition.Then, for
each x ∈ K , {Tnx} converges strongly to a point in K .Moreover, let the mapping T : K → K
be defined by

Tx = lim
n→∞Tnx, ∀x ∈ K .

Then, for each bounded subset B of K ,

lim sup
n→∞

{‖Tz – Tnz‖ : z ∈ B
}
= .

Obviously, if a family of mappings {Tn}∞n= satisfies the AKTT-condition and Tx =
limn→∞ Tnx for each x ∈ K , then it is unnecessary that F(T) =

⋂∞
i= F(Ti). To show this,

see the following example.
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Example . Let E =R and K = [, ]. Define a family of mappings {Tn}∞n= : K → K by

Tx = , Tn =

n
( + x), n≥ .

Then {Tn}∞n= satisfy theAKTT-condition. It is easy to see that for each x ∈ K , limn→∞ Tn ×
x = . Define the mapping T : K → K by Tx = limn→∞ Tnx. That is, Tx =  for all x ∈ K .
But F(T) �=⋂∞

n= F(Tn).

In this paper, we call that {Tn,T} satisfy theAKTT-condition if {Tn}∞n= satisfy theAKTT-
condition with F(T) =

⋂∞
n= F(Tn).

Lemma . ([]) Let C be a nonempty closed subset of a Hilbert space H . Then amapping
T : C → C is nonspreading if and only if

‖Tx – Ty‖ ≤ ‖x – y‖ + 〈x – Tx, y – Ty〉

for all x, y ∈ C.

By using Lemma ., we get the following simple but important result.

Lemma . Let H be a Hilbert space and C be a nonempty subset of H . Let {Tn} be a
family of nonspreading mappings of C into itself, and assume that limn→∞ Tnx exists for
each x ∈ C. Define the mapping T : C → C by Tx = limn→∞ Tnx. Then the mapping T is a
nonspreading mapping.

Proof In fact, for all x, y ∈ C, we have

‖Tx – Ty‖ =
∥∥∥ lim
n→∞Tnx – lim

n→∞Tny
∥∥∥

= lim
n→∞‖Tnx – Tny‖

≤ lim
n→∞

[‖x – y‖ + 〈x – Tnx, y – Tny〉
]

= ‖x – y‖ + 
〈
x – lim

n→∞Tnx, y – lim
n→∞Tny

〉
= ‖x – y‖ + 〈x – Tx, y – Ty〉.

Lemma . shows that the mapping T is a nonspreading mapping. �

Lemma . Let C be a closed convex subset of a real Hilbert space H , and let PC be the
metric projection from H onto C (i.e., for x ∈ H , PCx is the only point in C such that ‖x –
PCx‖ = inf{‖x–z‖ : z ∈ C}).Given x ∈ H and z ∈ C.Then z = PCx if and only if the following
relation holds:

〈x – z, y – z〉 ≤ , ∀y ∈ C.

Lemma . ([]) Let H be a real Hilbert space. Then the following equation holds:

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖, ∀x ∈ C and ∀t ∈ [, ].

http://www.fixedpointtheoryandapplications.com/content/2013/1/314
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2 Main results
Theorem. Let C be a nonempty closed convex subset of aHilbert space H . Let S : C → C
be a nonexpansive mapping and {Ti}∞i= : C → C be a countable family of nonspreading
mappings such that F = F(S) ∩ [

⋂∞
i= F(Ti)] �= ∅. Let {xn} be a sequence generated in the

following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,

yn = ( – αn)xn + αn[βnSxn +
∑n

i=(βi– – βi)Tixn],

Cn = {v ∈ C : ‖yn – v‖ ≤ ‖xn – v‖},
Dn =

⋂n
j=Cj,

xn+ = PDnx, n≥ ,

(.)

where {αn}, {βn} ⊂ [, ]. Assume that {βn} is strictly decreasing and β = . Then the fol-
lowing hold:

(i) If lim infn→∞ αn >  and limn→∞ βn = , then {xn} strongly converges to
q ∈ ⋂∞

i= F(Ti);
(ii) If lim infn→∞ αn( – αn) >  and lim infn→∞ βn > , then {xn} converges strongly to

q ∈ F .

Proof Obviously, each Cn is closed and convex and hence Dn is closed and convex. Next,
we show that F ⊂ Dn for all n ≥ . To end this, we need to prove that F ⊂ Cn for all n ≥ .
Indeed, for each p ∈ F , we have

‖yn – p‖ ≤ ( – αn)‖xn – p‖ + αn

[
βn‖Sxn – p‖ +

n∑
i=

(βi– – βi)‖Tixn – p‖
]

≤ ( – αn)‖xn – p‖ + αn

[
βn‖xn – p‖ +

n∑
i=

(βi– – βi)‖xn – p‖
]

= ‖xn – p‖. (.)

This implies that

p ∈ Cn for all n≥ .

Therefore, F ⊂ Cn and hence Cn is nonempty for all n ≥ . On the other hand, from the
definition of Dn, we see that F ⊂Dn =

⋂n
i=Cj for all n ≥ .

From xn+ = PDnx, we have

‖xn+ – x‖ ≤ ‖v – x‖, ∀v ∈Dn,n≥ .

Since PFx ∈ F ⊂Dn, one has

‖xn+ – x‖ ≤ ‖PFx – x‖, n≥ . (.)

This implies that {xn} is bounded and hence {yn} is bounded.

http://www.fixedpointtheoryandapplications.com/content/2013/1/314
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On the other hand, since Dn+ ⊂Dn for all n≥ , we have

xn+ = PDn+x ∈Dn+ ⊂Dn

for all n ≥ . From xn+ = PDnx one has

‖xn+ – x‖ ≤ ‖xn+ – x‖ (.)

for all n ≥ . It follows from (.) and (.) that the limit of {xn – x} exists.
SinceDm ⊂Dn and xm+ = PDmx ∈Dm ⊂Dn for allm≥ n and xn+ = PDnx, by Lemma .

one has

〈xn+ – x,xm+ – xn+〉 ≥ . (.)

It follows from (.) that

‖xm+ – xn+‖

=
∥∥xm+ – x – (xn+ – x)

∥∥

= ‖xm+ – x‖ + ‖xn+ – x‖ – 〈xn+ – x,xm+ – x〉
= ‖xm+ – x‖ + ‖xn+ – x‖ – 〈xn+ – x,xm+ – xn+ + xn+ – x〉
= ‖xm+ – x‖ – ‖xn+ – x‖ – 〈xn+ – x,xm+ – xn+〉
≤ ‖xm+ – x‖ – ‖xn+ – x‖. (.)

Since the limit of ‖xn – x‖ exists, we get

lim
m,n→∞‖xm – xn‖ = .

It follows that {xn} is a Cauchy sequence. Since H is a Hilbert space and C is closed and
convex, there exists q ∈ C such that

xn → q, as n → ∞. (.)

By takingm = n +  in (.), one arrives at

lim
n→∞‖xn+ – xn+‖ = ,

i.e.,

lim
n→∞‖xn+ – xn‖ = . (.)

Noticing that xn+ = PDnx ∈Dn ⊂ Cn, we get

‖yn – xn+‖ ≤ ‖xn – xn+‖ → ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/314
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and hence

‖yn – xn‖ ≤ ‖yn – xn+‖ + ‖xn+ – xn‖ → . (.)

From (.) and (.) it follows that

lim
n→∞‖yn – p‖ = lim

n→∞‖xn – p‖ = ‖q – p‖, ∀p ∈ F . (.)

Now we prove (i). Note that

yn = ( – αn)xn + αn

[
βnSxn +

n∑
i=

(βi– – βi)(Tixn – xn)

]
+ αn( – βn)xn

= ( – αnβn)xn + αnβnSxn + αn

n∑
i=

(βi– – βi)(Tixn – xn).

Hence,

αn

n∑
i=

(βi– – βi)(Tixn – xn) = ( – αnβn)(yn – xn) + αnβn(yn – Sxn). (.)

On the other hand, for any p ∈ F , from Lemma . we have

‖xn – p‖ = 〈xn – Tixn,p – Tip〉 + ‖xn – p‖

≥ ‖Tixn – Tip‖ = ‖Tixn – p‖ = ∥∥Tixn – xn + (xn – p)
∥∥

= ‖Tixn – xn‖ + ‖xn – p‖ + 〈Tixn – xn,xn – p〉,

and hence

‖Tixn – xn‖ ≤ 〈xn – Tixn,xn – p〉, ∀i ∈N. (.)

Note that {βn} is strictly decreasing. Hence from (.) and (.) we get

‖Tixn – xn‖ ≤ 
αn(βi– – βi)

[
( – αnβn)〈yn – xn,xn – Tip〉

+ αnβn〈yn – Sxn,xn – p〉], i ≥ . (.)

Since lim infn→∞ αn >  and limn→∞ βn = , from (.) and (.) it follows that

lim
n→∞‖Tixn – xn‖ = , ∀i ∈N. (.)

Since each Ti is a nonspreading mapping, by Lemma ., (.) and (.), we have

‖Tiq – Tixn‖ ≤ ‖xn – q‖ + 〈q – Tiq,xn – Tixn〉 → , ∀i ∈ N. (.)

Further, one has

‖q – Tiq‖ ≤ ‖q – xn‖ + ‖xn – Tixn‖ + ‖Tixn – Tiq‖ → , ∀i ∈N. (.)

So, we have q ∈ ⋂∞
i= F(Ti).

http://www.fixedpointtheoryandapplications.com/content/2013/1/314


Wang Fixed Point Theory and Applications 2013, 2013:314 Page 7 of 11
http://www.fixedpointtheoryandapplications.com/content/2013/1/314

To prove (ii), first we show that limn→∞ ‖xn – Sxn‖ = . For any p ∈ F , we have

‖yn – p‖ =

∥∥∥∥∥βn
[
( – αn)xn + αnSxn – p

]
+

n∑
i=

(βi– – βi)
[
( – αn)xn + αnTixn – p

]∥∥∥∥∥


≤ βn
∥∥( – αn)xn + αnSxn – p

∥∥ +
n∑
i=

(βi– – βi)
∥∥( – αn)xn + αnTixn – p

∥∥

≤ βn
∥∥( – αn)xn + αnSxn – p

∥∥

+
n∑
i=

(βi– – βi)
[
( – αn)‖xn – p‖ + αn‖Tixn – p‖]

≤ βn
∥∥( – αn)xn + αnSxn – p

∥∥ +
n∑
i=

(βi– – βi)‖xn – p‖

= βn
∥∥( – αn)xn + αnSxn – p

∥∥ + ( – βn)‖xn – p‖

≤ ‖xn – p‖,

and hence by (.) we get

 ≤ ‖xn – p‖ – βn
∥∥( – αn)xn + αnSxn – p

∥∥ – ( – βn)‖xn – p‖

= βn
[‖xn – p‖ – ∥∥( – αn)xn + αnSxn – p

∥∥]
≤ ‖xn – p‖ – ‖yn – p‖ → . (.)

Since lim infn→∞ βn > , it follows from (.) that

lim
n→∞

(‖xn – p‖ – ∥∥( – αn)xn + αnSxn – p
∥∥) = . (.)

From (.) and
∥∥( – αn)xn + αnSxn – p

∥∥ = ( – αn)‖xn – p‖ + αn‖Sxn – p‖ – αn( – αn)‖xn – Sxn‖,

we get

αn( – αn)‖xn – Sxn‖

=
(‖xn – p‖ – ∥∥( – αn)xn + αnSxn – p

∥∥) – αn‖xn – p‖ + αn‖Sxn – p‖

≤ (‖xn – p‖ – ∥∥( – αn)xn + αnSxn – p
∥∥) – αn‖xn – p‖ + αn‖xn – p‖

= ‖xn – p‖ – ∥∥( – αn)xn + αnSxn – p
∥∥ → .

Since lim infn→∞ αn( – αn) > , we get

lim
n→∞‖xn – Sxn‖ = . (.)

Now, using (.), (.) and

‖q – Sq‖ ≤ ‖q – xn‖ + ‖xn – Sxn‖ + ‖Sxn – Sq‖ ≤ ‖q – xn‖ + ‖xn – Sxn‖ → ,

which implies that q ∈ F(S).

http://www.fixedpointtheoryandapplications.com/content/2013/1/314
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Note that (.) and (.) imply that limn→∞ ‖yn – Sxn‖ = . Then, repeating (.) to
(.), we get q ∈ ⋂∞

i= F(Ti). So, q ∈ F . This completes the proof. �

Theorem. Let C be a nonempty closed convex subset of aHilbert space H . Let S : C → C
be a nonexpansive mapping and {Ti}∞i= : C → C be a countable family of nonspreading
mappings such that F = F(S) ∩ [

⋂∞
i= F(Ti)] �= ∅. Let {xn} be a sequence generated in the

following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,

yn = ( – αn)xn + αn[βnSxn + ( – βn)Tnxn],

Cn = {v ∈ C : ‖yn – v‖ ≤ ‖xn – v‖},
Dn =

⋂n
j=Cj,

xn+ = PDnx, n≥ ,

(.)

where {αn}, {βn} ⊂ [, ]. Assume that {Tn,T} satisfies the AKTT-condition. Then the fol-
lowing hold:

(i) If lim infn→∞ αn >  and limn→∞ βn = , then {xn} strongly converges to
v ∈ ⋂∞

i= F(Ti);
(ii) If lim infn→∞ αn( – αn) >  and lim infn→∞ βn > , then {xn} converges strongly to

z ∈ F .

Proof By a process similar to the proof of Theorem ., we can conclude that {xn} con-
verges strongly to some q ∈ C and

xn – yn → .

We first prove (i). From (.) we have

Tnxn – xn =


αn( – βn)
(yn – xn) –

βn

 – βn
(Sxn – xn),

and hence

‖Tnxn – xn‖ ≤ 
αn( – βn)

‖yn – xn‖ + βn

 – βn
‖Sxn – xn‖.

Since lim infn→∞ αn >  and limn→∞ βn = , we get

lim
n→∞‖Tnxn – xn‖ = . (.)

Further, by Lemma . and (.), we have

‖xn – Txn‖ ≤ ‖xn – Tnxn‖ + ‖Tnxn – Txn‖
≤ ‖xn – Tnxn‖ + sup

{‖Tnz – Tz‖ : z ∈ {xn}
} → . (.)

Since each Tn is a nonspreading mapping, Lemma . shows that T is a nonspreading
mapping. Further, by using Lemma ., we have

‖Tq – Txn‖ ≤ ‖xn – q‖ + 〈q – Tq,xn – Txn〉 → , ∀i ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/314


Wang Fixed Point Theory and Applications 2013, 2013:314 Page 9 of 11
http://www.fixedpointtheoryandapplications.com/content/2013/1/314

From (.) and (.) it follows that

‖q – Tq‖ ≤ ‖q – xn‖ + ‖xn – Txn‖ + ‖Txn – Tq‖ → . (.)

It follows that q ∈ F(T). Since ({Tn},T) satisfies the AKTT-condition, one has q ∈⋂∞
i= F(Ti) = F(T). This completes (i).
Next we show (ii). By a process similar to the proof of Theorem . and from (.) to

(.), we can get that

lim
n→∞‖xn – Sxn‖ = , lim

n→∞‖xn – Tnxn‖ = ,

lim
n→∞‖Txn – Tq‖ =  and lim

n→∞‖xn – Txn‖ = .

Finally, by

‖q – Sq‖ ≤ ‖q – xn‖ + ‖xn – Sxn‖ + ‖Sxn – Sq‖ ≤ ‖xn – q‖ + ‖xn – Sxn‖ → 

and

‖q – Tq‖ ≤ ‖q – xn‖ + ‖xn – Txn‖ + ‖Txn – Tq‖ → ,

we get q ∈ F(S) ∩ F(T). Since ({Tn},T) satisfies the AKTT-condition, we conclude that
q ∈ F . This completes (ii). �

Letting Ti = T for all i ∈N in Theorem . and Theorem ., we get the following corol-
lary.

Corollary . Let C be a nonempty closed convex subset of aHilbert spaceH .Let S : C → C
be a nonexpansive mapping and T : C → C be a nonspreading mapping such that F(S) ∩
F(T) �= ∅. Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,

yn = ( – αn)xn + αn[βnSxn + ( – βn)Txn],

Cn = {v ∈ C : ‖yn – v‖ ≤ ‖xn – v‖},
Dn =

⋂n
j=Cj,

xn+ = PDnx, n≥ ,

where {αn}, {βn} ⊂ [, ]. Then the following hold:
(i) If lim infn→∞ αn >  and limn→∞ βn = , then {xn} strongly converges to x′ ∈ F(T);
(ii) If lim infn→∞ αn( – αn) >  and lim infn→∞ βn > , then {xn} converges strongly to

q ∈ F(S)∩ F(T) with q = PFx.

Letting S = I in Theorems . and ., we get the following corollary.

Corollary . Let C be a nonempty closed convex subset of a Hilbert space H . Let {Ti}∞i= :
C → C be a countable family of nonspreading mappings such that

⋂∞
i= F(Ti) �= ∅. Let {xn}

http://www.fixedpointtheoryandapplications.com/content/2013/1/314
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be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,

yn = ( – αn( – βn))xn + αn
∑n

i=(βi– – βi)Tixn,

Cn = {v ∈ C : ‖yn – v‖ ≤ ‖xn – v‖},
Dn =

⋂n
j=Cj,

xn+ = PDnx, n≥ ,

where {αn}, {βn} ⊂ [, ]. Assume that {βn} is strictly decreasing and β = . Then if
lim infn→∞ αn( – αn) > , then {xn} strongly converges to q ∈ ⋂∞

i= F(Ti).

Corollary . Let C be a nonempty closed convex subset of a Hilbert space H . Let {Ti}∞i= :
C → C be a countable family of nonspreading mappings such that

⋂∞
i= F(Ti) �= ∅. Let {xn}

be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,

yn = ( – αn( – βn))xn + αn( – βn)Tnxn,

Cn = {v ∈ C : ‖yn – v‖ ≤ ‖xn – v‖},
Dn =

⋂n
j=Cj,

xn+ = PDnx, n≥ ,

where {γn} ⊂ [, ]. Assume that ({Tn,T}) satisfies the AKTT-condition. Then if
lim infn→∞ αn( – αn) > , then {xn} strongly converges to q ∈ ⋂∞

i= F(Ti).
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