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Abstract
In 2005 Prus and Sczcepanik introduced a large class of Banach spaces with the fixed
point property for nonexpansive mappings. We say that this class satisfies the PSz
condition. Checking that a given Banach space belongs to this class is not an easy
task. Here we study the relationship between the PSz condition and other
well-known geometrical properties of Banach spaces, and we give easier sufficient
conditions for a Banach space to satisfy it.
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1 Introduction
Metric fixed point theory is a branch of fixed point theory concerning methods and re-
sults that involve properties of an isometric nature. Around , Banach formulated his
famous contraction principle, which is considered as the origin of this theory. Since the
mid-s the outgrowth of a rich and symbiotic interaction between the geometry of Ba-
nach spaces and many developments in metric fixed point theory took place. Building on
several initial and independent results by Browder, Göhde and Kirk, we now have a rich,
though still far from complete, fixed point theory for nonexpansive and related types of
mappings in the setting of some classes of Banach spaces.
The classical theory produced a wide range of geometric/topological properties of Ba-

nach spaces which were sufficient to ensure the nonexpansive selfmappings of weakly
compact convex subsets have fixed points. (See, for instance, [, ].) Several of these prop-
erties are related with the rotundity of the unit ball of the space under consideration, as
for instance, the uniform convexity, the uniform smoothness and the uniform nonsquare-
ness. Other relevant properties in this field concern the behavior of the norm of the weak
convergent sequences. In this way, in , Prus and Szczepanik (see []) defined a large
class of Banach spaces, which they called nearly uniformly noncreasy (NUNC for short).
This class properly contains the uniformly convex and the uniformly smooth spaces, as
well as many of its generalizations.
In the same paper [] a deep fixed point theorem for nonexpansive mappings was given.

We will refer to the assumptions of this theorem as the Prus and Szczepanik condition
(PSz in short). In particular, NUNC Banach spaces, among many others, satisfy the PSz
condition.
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The aim of this note is to get a better understanding of this property. We will be able to
distinguish two nontrivial subfamilies of the class of Banach spaces with the PSz condition,
as well as to characterize them in terms of well-known parameters.
Very recently it has been shown in [] that the so-called E-convex Banach spaces, and

hence the uniformly nonsquare ones, have the PSz property. Moreover, the relevance of
this condition in metric fixed point theory has been reinforced because Betiuk-Pilarska
and Wiśnicki in [] have proved a fixed point theorem for a class of mappings which is
larger than the class of nonexpansive mappings, just for Banach spaces satisfying the PSz
condition.

2 Preliminaries
Throughout this paper we will use the standard notation in Banach space geometry. In
particular, if we have a Banach space (X,‖ · ‖), we denote BX := {x ∈ X : ‖x‖ ≤ } and SX :=
{x ∈ X : ‖x‖ = }. The weak convergence of a sequence (xn) in X to x ∈ X will be denoted
xn

w→ x.
For a bounded sequence (xn) in X we will use the notation

D
[
(xn)

]
:= lim sup

n
lim sup

m
‖xn – xm‖.

We will often be concerned with the following sets of weakly null sequences:

NX :=
{
(xn) : xn ∈ SX ,xn

w→ X
}

and

MX :=
{
(xn) : xn ∈ BX ,D

[
(xn)

] ≤ ,xn
w→ X

}
.

Note that MX is always nonempty, and that NX is nonempty whenever X is not a Schur
space.
The following coefficients, defined by Domínguez-Benavides in [], are useful to get

fixed point results:

R(a,X) = sup
{
lim inf

n
‖x + xn‖ : ‖x‖ ≤ a, (xn) ∈MX

}

and

M(X) = sup

{
 + a
R(a,X)

: a ≥ 
}
.

A Banach space X is said to have the weak fixed point property for nonexpansive map-
pings (wFPP for short), if for each nonempty weakly compact convex subset C of X, every
nonexpansivemapping ofC into itself has a fixed point. Nonexpansivemappings are those
that have a Lipschitz constant equal to .
The weakly convergent sequence coefficient of a Banach space X was introduced by

Bynum in  (see [] for details) and it is defined as

WCS(X) := inf

{
diama[(xn)]
ra[(xn)]

: (xn) is a weakly convergent sequence

which is not norm convergent
}
.
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Here

diama
[
(xn)

]
:= lim

n→∞
(
sup‖xi – xj‖ : i, j ≥ n

)
and

ra
[
(xn)

]
:= inf

{
lim sup‖xn – x‖ : x ∈ co{xn : n = , . . .}}.

It is clear that  ≤WCS(X)≤ .
An important result in [] is the following.

Theorem . Every Banach space with M(X) >  has the wFPP.

The following moduli were introduced by Prus and Szczepanik in []. Assume now that
X fails the Schur property. Then for x ∈ X and ε ≥  put

d(ε,x) := inf
(xn)∈NX

lim sup
n

‖x + εxn‖ – ‖x‖,

b(ε,x) := sup
(xn)∈NX

lim inf
n

‖x + εxn‖ – ‖x‖,

and

b(ε,x) := sup
(xn)∈MX

lim inf
n

‖x + εxn‖ – ‖x‖.

From the weak lower semicontinuity of the norm, the above moduli are non-negative.
It is straightforward to see that ‘limsup’ and ‘liminf ’ are interchangeable in the definitions

of d(ε,x), b(ε,x) and b(ε,x).
It is not difficult to see that R(a,X) can be written using the modulus b(·, ·) as follows:

R(a,X) = sup
{
b(,x) + ‖x‖ : ‖x‖ ≤ a

}
.

Moreover, from [, Lemma ] for any fixed x ∈ X, the functions d(·,x), b(·,x) and b(·,x)
are nondecreasing in the interval [,+∞).
In terms of these moduli, in [] the following class of Banach spaces was introduced.

Definition . Let X be a Banach space without the Schur property. We say that X is
nearly uniformly noncreasy (NUNC for short), if for every ε >  there is some t ∈ (, ε]
such that for every x ∈ SX it is the case that d(ε,x) ≥ t or b(t,x)≤ εt. Additionally we treat
spaces with the Schur property as being NUNC.

Some widely studied classes of Banach spaces which are relevant in metric fixed point
theory are properly included in the class of NUNC Banach spaces. Among many others,
one canmention here the so-called uniformly noncreasy Banach spaces, defined by Prus in
, as well as several of their generalizations. This notion was introduced to describe a
large class of superreflexive Banach spaces with the fixed point property for nonexpansive
mappings. Uniformly convex and uniformly smooth Banach spaces are in turn uniformly
noncreasy. (See [] for more details.)
Regarding the wFPP, the main result in [] is the following.
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Theorem . Let X be a Banach space failing the Schur property. If there exists ε ∈ (, )
such that for every x ∈ SX it is the case that b(,x) <  – ε or d(,x) > ε, then X has the
wFPP.

Of course, the NUNC Banach spaces fall within the scope of this theorem. On the other
hand, in [] one can find an example of a superreflexive Banach with the wFPP and lacking
the PSz condition.
The following definition is closely inspired on the assumptions of the above theorem,

and it has been treated in several recent papers (see [, ]).

Definition . Let X be a non-Schur Banach space. If there exists ε ∈ (, ) such that for
every x ∈ SX it is the case that b(,x) <  – ε or d(,x) > ε we say that X satisfies the Prus
and Szczepanik condition.

Next we recall several geometrical properties of Banach spaces which are related with
the tightest packing of balls of equal size in the unit ball of a Banach space. These properties
were introduced by Kottman in [] and Naidu and Sastry in []. For η ∈ (, ), a subset A
ofX is said to be symmetrically η-separated if the distance between any two distinct points
of A ∪ (–A) is at least η and a Banach space X is O-convex if the unit ball BX contains no
symmetrically ( – ε)-separated subset of cardinality n for some ε >  and some n ∈N. In
other words, we have the following.

Definition . ABanach spaceX isO-convex if there exist ε ∈ (, ) and a positive integer
n≥  such that for every x,x, . . . ,xn ∈ SX , there exist i, j ∈ {, . . . ,n} with i < j such that

min
{‖xi – xj‖,‖xi + xj‖

} ≤  – ε.

Naidu and Sastry in [] also characterized the dual property of O-convexity. For ε > ,
a convex subset A of BX is an ε-flat if A∩ ( – ε)BX = ∅. A collection D of ε-flats is jointly
complemented (jcc in short) if, for each distinct ε-flats A and B in D, the sets A ∩ B and
A∩ (–B) are nonempty. For a positive integer n define

E(n,X) = inf{ε >  : BX contains a jcc of ε-flats of cardinality n}.

Definition . A Banach space X is said to be E-convex if E(n,X) >  for some n ∈N.

It turns out that a Banach spaceX isO-convex if and only if its dual spaceX∗ is E-convex,
and that E-convex Banach spaces are superreflexive.
To end this section, we pay attention to the Opial modulus. It was defined by Prus in

[] (see also []), as the function rX : [,∞)→R given by

rX(c) := inf
{
lim inf

n
‖x + xn‖ –  : ‖x‖ ≥ c,xn

w→ , lim inf
n

‖xn‖ ≥ 
}
.

A Banach space X satisfies the uniformOpial condition if and only if rX(c) >  for all c > .
Section  of Chapter V in [] is devoted to the study of the uniform Opial condition and
the following theorem is proved there.
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Theorem . The Opial modulus associated to a Banach space satisfies the following
properties:
() rX is nondecreasing.
() rX(c) ≤ c for all c > .
() rX(c) – rX(c) ≤ c(c–c)

c
for all c ≥ c > .

() If rX() <  then rX is constant in [,–rX()].
() rX is continuous in [, +∞).

Moreover, the Opial modulus is also studied in [–], mainly with respect to its rela-
tionships with the wFPP.

3 Twoways to satisfy the PSz condition
The statement of the Prus and Szczepanik theorem referred to above is built on two in-
equalities: b(,x) <  – ε and d(,x) > ε. To clarify the PSz condition we define and study
two stronger properties, just paying separated attention to each one of these inequalities.

Definition . We say that a non-Schur Banach space X has the PSzA condition if there
exists ε ∈ (, ) such that for every x ∈ SX we have b(,x) <  – ε or equivalently

sup
x∈SX

b(,x) < .

Definition. WhenX is a non-Schur Banach spacewe say thatX has the PSzB condition
if there exists ε ∈ (, ) such that for every x ∈ SX we have d(,x) > ε or equivalently

inf
x∈SX

d(,x) > .

Remark . Clearly either the PSzA condition or the PSzB condition implies the Prus-
Szczepanik condition. In [, Theorem ] it is proved that the E-convex Banach spaces
satisfy the PSz condition. Indeed, what is really proved there is that these spaces satisfy
the PSzA condition. Example . below shows that the PSz condition does not imply the
PSzA condition nor the PSzB condition.

The following is an example of a family of Banach spaces satisfying the PSzA condition,
but failing NUNC.

Example . For  < p <∞ and β ≥ √
 let

Xp,β := (R⊕ Eβ )⊕∞ �p,

where Eβ is the space � endowed with the norm |x|β :=max{‖x‖,β‖x‖∞}.
For all β ≥  one hasM(Eβ ) > . (See [].) Moreover, from [] it is well known that the

spaces Eβ are P-convex for β ≥ √
.Given that the P-convexity is preserved under �q-sums

for  ≤ q ≤ ∞ (see []), then the spaces Xp,β are P-convex. Hence, its dual Yp,β := (Xp,β )∗

is E-convex, and therefore it satisfies the PSzA condition.
Let us suppose, for a contradiction, that Yp,β is NUNC. In this case, from [, Corollary ]

Xp,β would be NUNC. However, in [, Example .] it is shown that Xp,β fails to satisfy
the PSz condition, and hence it cannot be NUNC.

http://www.fixedpointtheoryandapplications.com/content/2014/1/37
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Remark . The last example also shows the following:
(a) Condition PSz is not self-dual.
(b) Condition PSzA is not self-dual (one can compare this fact with Corollary .).
(c) P-convexity does not imply the PSz condition.

Example . Consider the Banach space E√
, which consists of the linear space � en-

dowed with the norm

‖x‖√
 =max

{‖x‖,√‖x‖∞
}
.

In [, Proposition .] it is shown that E√
 is not E-convex. On the other hand, it is well

known (see [, Theorem ]) that this space is UNC and hence NUNC (see []). This exam-
ple, along with Example . shows that no inclusion holds between the classes of E-convex
and NUNC Banach spaces.

Example . Consider the Banach space X = R ⊕ c, that is, the linear space R × c
endowed with the norm

∥∥(t, y)∥∥ = |t| + ‖y‖c ,

where t ∈ R and y ∈ c. In [] is proved that M(X) =  and that X is NUNC and hence it
has the Prus-Szczepanik condition.
However, X lacks the PSzA condition. In fact, take x := (, c ) ∈ SX and the sequence

in SX given by xn := (, en). Note that
• ‖xn – xm‖ =  for n �=m. Hence D[(xn)] = lim supn lim supm ‖xn – xm‖ =  and
(xn) ∈M(X).

• xn
w→ X and ‖x + xn‖ =  + ‖en‖c ≡ .

Then

b(,x) = sup
(yn)∈M(X)

lim inf‖x + yn‖ – 

≥ lim inf‖x + xn‖ – 

= .

Thus, X does not have the PSzA condition.
Take x = (, e) ∈ SX . Let xn = (tn, yn) be a weak null sequence in SX , where yn =

(yn(), yn(), yn(), . . .) ∈ c. Then

lim sup
n

∥∥x + xn
∥∥ = lim sup

n

(|tn| + ‖e + yn‖c
)

= lim sup
n

(|tn| +max
{∣∣ + yn()

∣∣, ∣∣yn()∣∣, ∣∣yn()∣∣, . . .})
= .

Hence, for every x ∈ SX ,

d(,x) = inf
(xn)∈NX

{
lim inf

n
‖x + xn‖ – 

}
≤ lim sup

n

∥∥x + xn
∥∥ –  = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/37
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In consequence X does not have the PSzB condition, although this is a direct consequence
of Theorem . below.

On the other hand, the conditions PSzA and PSzB are compatible.

Example . LetH be aHilbert space. For every sequence (xn) ∈MH one has 〈h,xn〉 → 
for all h ∈H . Then

≥ lim sup
n

lim sup
m

‖xn – xm‖

= lim sup
n

lim sup
m

√
‖xn‖ + ‖xm‖ – 〈xn,xm〉 – 〈xm,xn〉

= lim sup
n

lim sup
m

√
‖xn‖ + ‖xm‖

=
√
 lim sup

n
‖xn‖.

Thus, lim supn ‖xn‖ ≤ √
 .

Take ε ∈ (,  –
√
√
 ); for x ∈ SH and (xn) ∈MH we have

lim inf
n

‖x + xn‖ = lim inf
n

√
‖x‖ + ‖xn‖ + 〈x,xn〉 + 〈xn,x〉

= lim inf
n

√
 + ‖xn‖

≤
√
√


<  – ε.

Therefore H has the PSzA condition.
Now, consider ε ∈ (,

√
 – ). For every x ∈ SH and any sequence xn ∈NH we have

lim sup
n

‖x + xn‖ = lim sup
n

√
‖x‖ + ‖xn‖ + 〈x,xn〉 + 〈xn,x〉

= lim sup
n

√
‖x‖ + ∥∥xn∥∥

=
√
 >  + ε.

Consequently H has the PSzB condition.

It is not hard to check that every uniformly convex Banach space also satisfies both PSzA
and PszB conditions. However, the following example is a not uniformly convex Banach
space which also satisfies these conditions.

Example . Consider the Banach space X = � ⊕ �. In [] it is showed that X is E-
convex and hence it enjoys the PSzA condition.

To see that X also enjoys the PSzB condition we need the following lemma, whose proof
only needs elementary calculus.

http://www.fixedpointtheoryandapplications.com/content/2014/1/37
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Lemma . The restriction of the function f : R → R given by f (a,b, c,d) =
√
a + c +√

b + c to the set {(a,b, c,d) : a + b = , c + d = ,a ≥ ,b ≥ , c ≥ ,d ≥ } attains its
minimum value

√
 at any point of the form (a,  – a,a,  – a) with a ∈ [, ].

Take x = (x,x) ∈ SX and (xn) = ((xn,xn)) a weak null sequence in SX , then

lim sup
n

‖x + xn‖ = lim sup
n

(∥∥x + xn
∥∥
 +

∥∥x + xn
∥∥


)

= lim sup
n

(√∥∥x∥∥
 +

∥∥xn∥∥
 +

〈
x,xn

〉
+

〈
xn,x

〉

+
√∥∥x∥∥

 +
∥∥xn∥∥

 +
〈
x,xn

〉
+

〈
xn,x

〉)

= lim sup
n

(√∥∥x∥∥
 +

∥∥xn∥∥
 +

√∥∥x∥∥
 +

∥∥xn∥∥


)

≥ √
 (from Lemma .).

Thus, d(,x) := inf(xn)∈NX lim supn ‖x + xn‖ – ‖x‖ ≥ √
 –  > . Hence X has the PSzB

condition.

4 The PSz condition andM(X)
Nextwe obtain a characterization of those Banach spaceswhich satisfy the PSzA condition
in terms of the coefficientM(X). First, we recall Lema . of [].

Lemma . Let X be a Banach space. The following conditions are equivalent:
() M(X) > ,
() there exists a >  such that R(a,X) <  + a,
() for every a > , R(a,X) <  + a.

Moreover, we need the following lemma.

Lemma . Let (xn) be a sequence in BX , x ∈ X such that lim infn ‖ax + xn‖ >  for some
a > , then for b≥ a we have

lim inf
n

‖bx + xn‖ ≥ lim inf
n

‖ax + xn‖.

Proof There exists n such that for n ≥ n we have

‖ax + xn‖ > .

Let fn ∈ SX∗ such that fn(ax + xn) = ‖ax + xn‖. Then, for n≥ n

fn(x) =
‖ax + xn‖ – fn(xn)

a
≥ ‖ax + xn‖ – 

a
> .

Then, for n≥ n

‖bx + xn‖ ≥ fn(bx + xn) = bfn(x) + fn(xn)

≥ afn(x) + fn(xn) = fn(ax + xn)

= ‖ax + xn‖.

http://www.fixedpointtheoryandapplications.com/content/2014/1/37
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Therefore

lim inf
n

‖bx + xn‖ ≥ lim inf
n

‖ax + xn‖. �

Proposition . Let X be a Banach space. If (xn) is a weakly null sequence in BX and a ≥ ,
then

sup
‖x‖≤a

[
lim inf

n
‖x + xn‖

]
= sup

‖x‖=a

[
lim inf

n
‖x + xn‖

]
.

Proof Since

sup
‖x‖≤a

lim inf
n

‖x + xn‖ ≥ sup
‖x‖=a

lim inf‖x + xn‖ ≥ a.

Then, the equality is clear when sup‖x‖≤a lim infn ‖x + xn‖ = a.
Suppose that σ := sup‖x‖≤a lim infn ‖x + xn‖ > a. Choose ε ∈ (,σ – a) then there exists

x with ‖x‖ ≤ a such that

lim inf
n

‖x + xn‖ > σ – ε > a.

Note that x �= . Otherwise, we would obtain the following contradiction:

≥ lim inf
n

‖xn‖ = lim inf
n

‖x + xn‖ > σ – ε > a≥ .

So, using a
‖x‖ ≥  and Lemma ., we have

lim inf
n

∥∥∥∥ ax
‖x‖ + xn

∥∥∥∥ ≥ lim inf
n

‖x + xn‖ > σ – ε.

Therefore sup‖x‖=a lim infn ‖x + xn‖ ≥ sup‖x‖≤a lim infn ‖x + xn‖. �

Theorem . For a non-Schur Banach space X the following statements are equivalent:
(a) M(X) > ,
(b) R(,X) < ,
(c) X has the PSzA condition.

Proof The equivalence between (a) and (b) is an immediate consequence of Lemma ..
We claim that for a ≥ ,

R(a,X) = sup
‖x‖=a

b(,x) + a.

Of course,

R(a,X) = sup
{
b(,x) + ‖x‖ : ‖x‖ ≤ a

}
≥ sup

{
b(,x) + ‖x‖ : ‖x‖ = a

}
= sup

{
b(,x) : ‖x‖ = a

}
+ a.

http://www.fixedpointtheoryandapplications.com/content/2014/1/37
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We are going to see that the previous inequality is in fact an equality. Assume to the con-
trary that

sup
{
b(,x) + ‖x‖ : ‖x‖ ≤ a

}
> sup

{
b(,x) : ‖x‖ = a

}
+ a.

Then, there exist x with ‖x‖ ≤ a and (yn) ∈MX such that

lim inf
n

(‖x + yn‖ – ‖x‖
)
+ ‖x‖ > sup

{
b(,x) : ‖x‖ = a

}
+ a.

So, there is a positive number k such that for all x with ‖x‖ = a we get

lim inf
n

‖x + yn‖ > k > b(,x) + a ≥ lim inf
n

‖x + yn‖ – ‖x‖ + a = lim inf
n

‖x + yn‖.

Therefore

lim inf
n

‖x + yn‖ > k ≥ sup
‖x‖=a

lim inf
n

‖x + yn‖.

But from Proposition . this is a contradiction. So we have

R(a,X) = sup
‖x‖=a

b(,x) + a.

From the statement of our previous claim, we have

R(,X) = sup
x∈SX

b(,x) + ,

which shows the equivalence between (b) and (c). �

5 The PSz condition and Opial modulus
The aimof this section is to characterize the PSzB condition in terms of theOpialmodulus.

Proposition . For c ≥ ,

rX(c) = inf
{
lim inf

n
‖x + xn‖ –  : ‖x‖ ≥ c, (xn) ∈NX

}
,

and

rX(c) ≤ inf‖x‖=c d(,x) + c – . ()

Proof Clearly rX(c) ≤ inf{lim infn ‖x + xn‖ –  : ‖x‖ ≥ c, (xn) ∈NX}.
For ε > , there exist x ∈ X and aweak null sequence (xn) with ‖x‖ ≥ c and lim infn ‖xn‖ ≥

 such that

rX(c) + ε ≥ lim inf
n

‖x + xn‖ – 

≥ lim inf

∥∥∥∥x + xn
‖xn‖

∥∥∥∥ –  (from [, Lemma ])

≥ inf
{
lim inf

n
‖x + xn‖ –  : ‖x‖ ≥ c, (xn) ∈NX

}
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/37
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Moreover,

rX(c) = inf‖x‖≥c
inf

(xn)∈NX
lim inf

n
‖x + xn‖ – 

= inf‖x‖≥c

(
inf

(xn)∈NX
lim inf

n
‖x + xn‖ – ‖x‖

)
+ ‖x‖ – 

= inf‖x‖≥c
d(,x) + ‖x‖ – 

≤ inf‖x‖=c d(,x) + c – ,

which completes the proof. �

Proposition . Let X be a Banach space. If (xn) is a weakly null sequence in BX and c ≥ ,
then

inf‖x‖≥c

[
lim inf

n
‖x + xn‖

]
= inf‖x‖=c

[
lim inf

n
‖x + xn‖

]
.

Proof We have

c≤ inf‖x‖≥c
lim inf

n
‖x + xn‖ ≤ inf‖x‖=c lim inf

n
‖x + xn‖.

Then, the proposed equality is obvious when inf‖x‖=c lim infn ‖x + xn‖ = c.
Assume that

inf‖x‖≥c
lim inf

n
‖x + xn‖ < inf‖x‖=c lim inf

n
‖x + xn‖ and inf‖x‖=c lim inf

n
‖x + xn‖ > c.

Then there is some x ∈ X with ‖x‖ ≥ c such that

lim inf
n

‖x + xn‖ < inf‖x‖=c lim inf
n

‖x + xn‖.

So, there exists k >  such that

max
{
lim inf

n
‖x + xn‖, c

}
< k < inf‖x‖=c lim inf

n
‖x + xn‖.

Then, for all x ∈ X with ‖x‖ = c

max
{
lim inf

n
‖x + xn‖, c

}
< k < lim inf

n
‖x + xn‖.

In particular

max
{
lim inf

n
‖x + xn‖, c

}
< k < lim inf

n

∥∥∥∥ cx
‖x‖ + xn

∥∥∥∥.
But from Lemma . this is a contradiction, because k >  and c

‖x‖ ≤ . �
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Remark . For the Hilbert space �, it is well known that r� (c) =
√
 + c –  (see []),

while

inf‖x‖=c d(,x) + c –  = inf‖x‖=c inf
(xn)∈N (X)

{
lim sup‖xn + x‖ – ‖x‖} + c – 

=
√
 + c – .

Consequently, in this space, inequality () is in fact an equality for every c≥ .Nevertheless
in a general Banach space, we do not know if this holds for  < c < . However, if the Banach
space X does not satisfy the uniformOpial condition, then rX() <  while inf‖x‖= d(,x) +
– = . Since the Opial modulus rX is continuous in [,∞), then in this case, equality ()
below fails for c in a nontrivial interval [,α). Conversely, if X satisfies the uniform Opial
condition, then rX() = , and hence the equality () is satisfied at c = .

Theorem . X has the PSzB if and only if rX() > .

Proof We claim that for c≥ ,

rX(c) = inf‖x‖=c d(,x) + c – . ()

Assume that

rX(c) < inf‖x‖=c d(,x) + c – .

Then, there is some x ∈ X with ‖x‖ ≥ c such that

d(,x) + ‖x‖ –  < inf‖x‖=c d(,x) + c – .

Therefore there exists (xn) ∈NX such that

lim inf
n

‖x + xn‖ – ‖x‖ + ‖x‖ < inf‖x‖=c d(,x) + c.

Thus, there exists k >  such that for all x ∈ X with ‖x‖ = c we have

lim inf
n

‖x + xn‖ < k < lim inf
n

‖x + xn‖ – ‖x‖ + c = lim inf
n

‖x + xn‖,

but this is a contradiction with Proposition ..
From our claim, taking c =  we obtain the desired result. �

Remark . In [] Xu proved that the condition rX() >  implies the wFPP. According
to the above result, we realize that the Prus-Szczepanik theorem recaptures Xu’s result.
This condition is relevant to prove some other results in metric fixed point theory as in
[] and [].

Corollary . Let X be a reflexive Banach space. Then we have the following.
(a) If X∗ satisfies PSzB, then X satisfies PSzA.
(b) If X satisfies PSzB, then X∗ satisfies PSzA.

http://www.fixedpointtheoryandapplications.com/content/2014/1/37


Hernández-Linares et al. Fixed Point Theory and Applications 2014, 2014:37 Page 13 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/37

Proof From [, Theorem .] we know that rX∗ () >  impliesM(X) > . �

Some examples with rX() >  are the following.

Example . (See []) For  < p < ∞, and c ≥ ,

r�p (c) = ( + c)

p – .

Example . (See []) Let us now consider Bynum’s spaces �p,q, which are spaces �p en-
dowed with an equivalent norm given by the formula ‖x‖p,q := (‖x+‖q + ‖x–‖q)/p.
If  < p < ∞ and  ≤ q < ∞ then for all c ≥ ,

r�p,q (c) =min
{(
 + cp

) 
p – ,

(
 + cq

) 
q – 

}
.

Example . (See []) Let Xp be � endowed with the norm

‖x‖ :=
(

|x|p +
( ∞∑

n=

|xn|
) p


) 

p

,

where p > . Then

rXp (c) =
(
cp + 

) 
p – .

Notice that for all c≥ ,

c –  ≤ rX(c) ≤ c.

In particular, rX(c) >  for all c >  [].

6 The second way leads to the first one
Theorem . If a Banach space X has the PszB condition (equivalently rX() > ), then X
has the PszA condition (equivalently M(X) > ).

Proof From [, p.] we know that M(X) ≥ WCS(X). On the other hand, in [] it was
shown thatWCS(X)≥  + rX() and the conclusion immediately follows. �

Remark . The above theorem shows that Xu [] is, in fact, a particular case of the
Domínguez-Benavides fixed point result (Theorem .).

The following example shows that there are spaces withM(X) >  (i.e. satisfying PSzA),
but with rX() =  (i.e. lacking PSzB).

Example . The classical Banach space (c,‖ · ‖∞) has the PSzA condition and it fails
the PSzB condition.
It is well known (see [, p.]) thatM(c) = , and hence it satisfies the PSzA condition.

http://www.fixedpointtheoryandapplications.com/content/2014/1/37
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In order to check that c fails the PSzB condition take x = e and xn = en for n≥ . Then,
we have ‖x‖∞ ≥ , lim infn ‖xn‖∞ ≥  and lim infn ‖x+ xn‖∞ = . From the definition of the
Opial modulus we get

rc ()≤ lim inf
n

‖x + xn‖∞ –  = ,

and the conclusion now follows from Theorem ..
It is easy to check that (c,‖ · ‖∞) is NUNC. Thus, this property does not imply the

condition PSzB.
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5. Betiuk-Pilarska, A, Wiśnicki, A: On the Suzuki nonexpansive-type mappings. Ann. Funct. Anal. 4, 72-86 (2013)
6. Domínguez-Benavides, T: Stability of the fixed point property for nonexpansive mappings. Houst. J. Math. 22,

835-849 (1996)
7. Ayerbe-Toledano, J, Domínguez-Benavides, T, López Acedo, G: Measures of Noncompactness in Metric Fixed Point

Theory. Operator Theory: Advances and Applications, vol. 99. Birkhäuser, Basel 1997
8. Prus, S: Banach spaces which are uniformly noncreasy. Nonlinear Anal. TMA 30, 2317-2324 (1997)
9. Fetter Nathansky, H, Llorens-Fuster, E: A product space with the fixed point property. Fixed Point Theory Appl. 2012,

Article ID 91 (2012)
10. Kottman, CA: Packing and reflexivity in Banach spaces. Trans. Am. Math. Soc. 150, 565-574 (1970)
11. Naidu, SVR, Sastry, KPR: Convexity conditions in normed linear spaces. J. Reine Angew. Math. 297, 35-53 (1976)
12. Prus, S: Spaces with the uniform Opial property. Nonlinear Anal. 18, 697-704 (1992)
13. Lin, PK, Tan, KK, Xu, HK: Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive

mappings. Nonlinear Anal. 24, 929-946 (1995)
14. Domínguez-Benavides, T, Japón-Pineda, MA: Opial modulus, moduli of noncompact convexity and fixed points for

asymptotically regular mappings. Nonlinear Anal. 41, 617-630 (2000)
15. Kuczumow, T: Opial’s modulus and fixed points of semigroups of mappings. Proc. Am. Math. Soc. 127, 2671-2678

(1999)
16. Xu, HK: Geometrical coefficients of Banach spaces and nonlinear mappings. In: Recent Advances on Metric Fixed

Point Theory. University of Seville, Seville (1996)
17. Xu, HK: Banach space properties of Opial type and fixed point theorems for nonlinear mappings. Ann. Univ. Mariae

Curie-Skl̄odowska, Sect. A LI(2), 25-A, 293-303 (1997)
18. Domínguez-Benavides, T, Japón Pineda, MA: Stability of the fixed point property for nonexpansive mappings in some

classes of spaces. Commun. Appl. Nonlinear Anal. 5, 37-46 (1998)
19. Maluta, E: A class of P-convex spaces lacking normal structure. Nonlinear Anal. 75, 2011-2015 (2012)
20. Kuczumow, T, Reich, S: An application of Opial’s modulus to the fixed point theory of semigroups of Lipschitzian

mappings. Ann. Univ. Mariae Curie-Skl̄odowska, Sect. A LI(2), 17-A, 185-192 (1997)
21. Japón-Pineda, MA: Stability of the fixed point property for nonexpansive mappings. Ph.D. dissertation, University of

Seville (1998)

10.1186/1687-1812-2014-37
Cite this article as: Hernández-Linares et al.: An overview on the Prus-Szczepanik condition. Fixed Point Theory and
Applications 2014, 2014:37

http://www.fixedpointtheoryandapplications.com/content/2014/1/37

	An overview on the Prus-Szczepanik condition
	Abstract
	Keywords

	Introduction
	Preliminaries
	Two ways to satisfy the PSz condition
	The PSz condition and M(X)
	The PSz condition and Opial modulus
	The second way leads to the ﬁrst one
	Competing interests
	Authors' contributions
	Acknowledgements
	References


