Skip to main content
  • Research Article
  • Open access
  • Published:

Hyperbolic monotonicity in the Hilbert ball

Abstract

We first characterize -monotone mappings on the Hilbert ball by using their resolvents and then study the asymptotic behavior of compositions and convex combinations of these resolvents.

[1234567891011121314151617181920]

References

  1. Abate M: The infinitesimal generators of semigroups of holomorphic maps. Annali di Matematica Pura ed Applicata. Serie Quarta 1992,161(1):167–180. 10.1007/BF01759637

    Article  MathSciNet  MATH  Google Scholar 

  2. Aharonov D, Elin M, Reich S, Shoikhet D: Parametric representations of semi-complete vector fields on the unit balls in and in Hilbert space. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni 1999,10(4):229–253.

    MathSciNet  MATH  Google Scholar 

  3. Bauschke HH, Combettes PL, Reich S: The asymptotic behavior of the composition of two resolvents. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods 2005,60(2):283–301.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke HH, Matoušková E, Reich S: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods 2004,56(5):715–738. 10.1016/j.na.2003.10.010

    Article  MathSciNet  MATH  Google Scholar 

  5. Goebel K, Reich S: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics. Volume 83. Marcel Dekker, New York; 1984:ix+170.

    Google Scholar 

  6. Halpern BR, Bergman GM: A fixed-point theorem for inward and outward maps. Transactions of the American Mathematical Society 1968, 130: 353–358. 10.1090/S0002-9947-1968-0221345-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Kuczumow T: Nonexpansive retracts and fixed points of nonexpansive mappings in the Cartesian product of Hilbert balls. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods 1985,9(6):601–604. 10.1016/0362-546X(85)90043-4

    Article  MathSciNet  MATH  Google Scholar 

  8. Kuczumow T, Stachura A: Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. I. Commentationes Mathematicae Universitatis Carolinae 1988,29(3):399–402.

    MathSciNet  MATH  Google Scholar 

  9. Kuczumow T, Stachura A: Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. II. Commentationes Mathematicae Universitatis Carolinae 1988,29(3):403–410.

    MathSciNet  MATH  Google Scholar 

  10. Martin RH Jr.: A global existence theorem for autonomous differential equations in a Banach space. Proceedings of the American Mathematical Society 1970, 26: 307–314. 10.1090/S0002-9939-1970-0264195-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Minty GJ: Monotone (nonlinear) operators in Hilbert space. Duke Mathematical Journal 1962,29(3):341–346. 10.1215/S0012-7094-62-02933-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Reich S: Minimal displacement of points under weakly inward pseudo-Lipschitzian mappings. Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali 1975,59(1–2):40–44 (1976).

    MathSciNet  MATH  Google Scholar 

  13. Reich S: On fixed point theorems obtained from existence theorems for differential equations. Journal of Mathematical Analysis and Applications 1976,54(1):26–36. 10.1016/0022-247X(76)90232-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Reich S: Extension problems for accretive sets in Banach spaces. Journal of Functional Analysis 1977,26(4):378–395. 10.1016/0022-1236(77)90022-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Reich S: Averaged mappings in the Hilbert ball. Journal of Mathematical Analysis and Applications 1985,109(1):199–206. 10.1016/0022-247X(85)90187-8

    Article  MathSciNet  MATH  Google Scholar 

  16. Reich S: The alternating algorithm of von Neumann in the Hilbert ball. Dynamic Systems and Applications 1993,2(1):21–25.

    MathSciNet  MATH  Google Scholar 

  17. Reich S, Shafrir I: Nonexpansive iterations in hyperbolic spaces. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods 1990,15(6):537–558. 10.1016/0362-546X(90)90058-O

    Article  MathSciNet  MATH  Google Scholar 

  18. Reich S, Shoikhet D: Generation theory for semigroups of holomorphic mappings in Banach spaces. Abstract and Applied Analysis 1996,1(1):1–44. 10.1155/S1085337596000012

    Article  MathSciNet  MATH  Google Scholar 

  19. Reich S, Shoikhet D: Semigroups and generators on convex domains with the hyperbolic metric. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni 1997,8(4):231–250.

    MathSciNet  MATH  Google Scholar 

  20. Shafrir I: Coaccretive operators and firmly nonexpansive mappings in the Hilbert ball. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods 1992,18(7):637–648. 10.1016/0362-546X(92)90003-W

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon Reich.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Kopecká, E., Reich, S. Hyperbolic monotonicity in the Hilbert ball. Fixed Point Theory Appl 2006, 78104 (2006). https://doi.org/10.1155/FPTA/2006/78104

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/FPTA/2006/78104

Keywords