Skip to main content

Fixed point results for cyclic (ψ,ϕ,A,B)-contraction in partial metric spaces

Abstract

Very recently, Agarwal et al. (Fixed Point Theory Appl. 2012:40, 2012) initiated the study of fixed point theorems for mappings satisfying cyclical generalized contractive conditions in complete partial metric spaces. In the present paper, we study some fixed point theorems for a mapping satisfying a cyclical generalized contractive condition based on a pair of altering distance functions in complete partial metric spaces. Also, we introduce an example and an application to support the usability of our paper.

MSC:54H25, 47H10.

1 Introduction

The existence and uniqueness of fixed and common fixed point theorems of operators has been a subject of great interest since Banach [1] proved the Banach contraction principle in 1922. Many authors generalized the Banach contraction principle in various spaces such as quasi-metric spaces, generalized metric spaces, cone metric spaces and fuzzy metric spaces. Matthews [2] introduced the notion of partial metric spaces in such a way that each object does not necessarily have to have a zero distance from itself and proved a modified version of the Banach contraction principle. Afterwards, many authors proved many existing fixed point theorems in partial metric spaces (see [321] for examples).

We recall below the definition of partial metric space and some of its properties.

Definition 1 [2]

A partial metric on a nonempty set X is a function p:X×X R + such that for all x,y,zX:

( p 1 ) x=yp(x,x)=p(x,y)=p(y,y),

( p 2 ) p(x,x)p(x,y),

( p 3 ) p(x,y)=p(y,x),

( p 4 ) p(x,y)p(x,z)+p(z,y)p(z,z).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial metric on X. It is clear that, if p(x,y)=0, then from ( p 1 ) and ( p 2 ), x=y. But if x=y, p(x,y) may not be 0. The function p(x,y)=max{x,y} for all x,y R + defines a partial metric on  R + .

Each partial metric p on X generates a T 0 topology τ p on X which has as a base the family of open p-balls { B p (x,ε):xX,ε>0}, where B p (x,ε)={yX:p(x,y)<p(x,x)+ε} for all xX and ε>0.

If p is a partial metric on X, then the function d p :X×X R + given by

d p (x,y)=2p(x,y)p(x,x)p(y,y)

is a metric on X.

Definition 2 Let (X,p) be a partial metric space. Then

  1. (1)

    A sequence { x n } in a partial metric space (X,p) converges to a point xX if and only if p(x,x)= lim n p(x, x n ).

  2. (2)

    A sequence { x n } in a partial metric space (X,p) is called a Cauchy sequence iff lim n , m p( x n , x m ) exists (and is finite).

  3. (3)

    A partial metric space (X,p) is said to be complete if every Cauchy sequence { x n } in X converges, with respect to τ p , to a point xX such that p(x,x)= lim n , m p( x n , x m ).

  4. (4)

    A subset A of a partial metric space (X,p) is closed if whenever { x n } is a sequence in A such that { x n } converges to some xX, then xA.

Remark 1 The limit in a partial metric space is not unique.

Lemma 1 ([2, 17])

Let (X,p) be a partial metric space.

  1. (a)

    { x n } is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric space (X, d p ).

  2. (b)

    A partial metric space (X,p) is complete if and only if the metric space (X, d p ) is complete. Furthermore, lim n d p ( x n ,x)=0 if and only if

    p(x,x)= lim n p( x n ,x)= lim n , m p( x n , x m ).

Now, we define the cyclic map.

Definition 3 Let A and B be nonempty subsets of a metric space (X,d) and T:ABAB. Then T is called a cyclic map if T(A)B and T(B)A.

In 2003, Kirk et al. [22] gave the following fixed point theorem for a cyclic map.

Theorem 1 [22]

Let A and B be nonempty closed subsets of a complete metric space (X,d). Suppose that T:ABAB is a cyclic map such that

d(Tx,Ty)kd(x,y)xA,yB.

If k[0,1), then T has a unique fixed point in AB.

Karapınar and Erhan [23] introduced the following types of cyclic contractions:

Definition 4 [23]

Let A and B be nonempty closed subsets of a metric space (X,d). A cyclic map T:ABAB is said to be a Kannan type cyclic contraction if there exists k(0, 1 2 ) such that

d(Tx,Ty)k ( d ( T x , x ) + d ( T y , y ) ) xA,yB.

Definition 5 [23]

Let A and B be nonempty closed subsets of a metric space (X,d). A cyclic map T:ABAB is said to be a Reich type cyclic contraction if there exists k(0, 1 3 ) such that

d(Tx,Ty)k ( d ( x , y ) + d ( T x , x ) + d ( T y , y ) ) xA,yB.

Definition 6 [23]

Let A and B be nonempty closed subsets of a metric space (X,d). A cyclic map T:ABAB is said to be a Ćirić type cyclic contraction if there exists k(0, 1 3 ) such that

d(Tx,Ty)kmax { d ( x , y ) , d ( T x , x ) , d ( T y , y ) } xA,yB.

Moreover, Karapınar and Erhan [23] obtained the following results:

Theorem 2 [23]

Let A and B be nonempty closed subsets of a complete metric space (X,d), and let T:ABAB be a Kannan type cyclic contraction. Then T has a unique fixed point in AB.

Theorem 3 [23]

Let A and B be nonempty closed subsets of a complete metric space (X,d), and let T:ABAB be a Reich type cyclic contraction. Then T has a unique fixed point in AB.

Theorem 4 [23]

Let A and B be nonempty closed subsets of a complete metric space (X,d), and let T:ABAB be a Ćirić type cyclic contraction. Then T has a unique fixed point in AB.

For more results on cyclic contraction mappings, see [24, 25].

Very recently, Agarwal et al. [26] initiated the study of fixed point theorems for mappings satisfying cyclical generalized contractive conditions in complete partial metric spaces.

Khan et al. [27] introduced the notion of altering distance function as follows.

Definition 7 (Altering distance function [27])

The function ϕ:[0,+)[0,+) is called an altering distance function if the following properties are satisfied:

  1. (1)

    ϕ is continuous and nondecreasing.

  2. (2)

    ϕ(t)=0 if and only if t=0.

For some work on altering distance function, we refer the reader to [2833].

The purpose of this paper is to study some fixed point theorems for a mapping satisfying a cyclical generalized contractive condition based on a pair of altering distance functions in partial metric spaces.

2 Main result

We start with the following definition.

Definition 8 Let (X,p) be a partial metric space and A, B be nonempty closed subsets of X. A mapping T:XX is called a cyclic (ψ,ϕ,A,B)-contraction if

  1. (1)

    ψ and ϕ are altering distance functions;

  2. (2)

    AB has a cyclic representation w.r.t. T; that is, T(A)B and T(B)A; and(3)

    ψ ( p ( T x , T y ) ) ψ ( max { p ( x , y ) , p ( x , T x ) , p ( y , T y ) , 1 2 ( p ( x , T y ) + p ( T x , y ) ) } ) ϕ ( max { p ( x , y ) , p ( y , T y ) } )
    (2.1)

for all xA and yB.

From now on, by ψ and ϕ we mean altering distance functions unless otherwise stated.

In the rest of this paper, N stands for the set of nonnegative integer numbers.

Theorem 5 Let A and B be nonempty closed subsets of a complete partial metric space (X,p). If T:XX is a cyclic (ψ,ϕ,A,B)-contraction, then T has a unique fixed point uAB.

Proof Let x 0 A. Since TAB, we choose x 1 B such that T x 0 = x 1 . Also, since TBA, we choose x 2 A such that T x 1 = x 2 . Continuing this process, we can construct sequences { x n } in X such that x 2 n A, x 2 n + 1 B, x 2 n + 1 =T x 2 n and x 2 n + 2 =T x 2 n + 1 . If x 2 n 0 + 1 = x 2 n 0 + 2 for some nN, then x 2 n 0 + 1 =T x 2 n 0 + 1 . Thus, x 2 n 0 + 1 is a fixed point of T in AB. Thus, we may assume that x 2 n + 1 x 2 n + 2 for all nN.

Given nN. If n is even, then n=2t for some tN. By (2.1), we have

ψ ( p ( x n + 1 , x n + 2 ) ) = ψ ( p ( x 2 t + 1 , x 2 t + 2 ) ) = ψ ( p ( T x 2 t , T x 2 t + 1 ) ) ψ ( max { p ( x 2 t , x 2 t + 1 ) , p ( T x 2 t , x 2 t ) , p ( T x 2 t + 1 , x 2 t + 1 ) , 1 2 ( p ( x 2 t , T x 2 t + 1 ) + p ( T x 2 t , x 2 t + 1 ) ) } ) ϕ ( max { p ( x 2 t , x 2 t + 1 ) , p ( T x 2 t + 1 , x 2 t + 1 ) } ) = ψ ( max { p ( x 2 t , x 2 t + 1 ) , p ( x 2 t + 2 , x 2 t + 1 ) , 1 2 ( p ( x 2 t , x 2 t + 2 ) + p ( x 2 t + 1 , x 2 t + 1 ) ) } ) ϕ ( max { p ( x 2 t , x 2 t + 1 ) , p ( x 2 t + 2 , x 2 t + 1 ) } ) .

By ( p 4 ), we have

ψ ( p ( x n + 1 , x n + 2 ) ) = ψ ( p ( x 2 t + 1 , x 2 t + 2 ) ) ψ ( max { p ( x 2 t , x 2 t + 1 ) , p ( x 2 t + 2 , x 2 t + 1 ) , 1 2 ( p ( x 2 t , x 2 t + 1 ) + p ( x 2 t + 1 , x 2 t + 2 ) ) } ) ϕ ( max { p ( x 2 t , x 2 t + 1 ) , p ( x 2 t + 2 , x 2 t + 1 ) } ) ψ ( max { p ( x 2 t , x 2 t + 1 ) , p ( x 2 t + 2 , x 2 t + 1 ) } ) ϕ ( max { p ( x 2 t , x 2 t + 1 ) , p ( x 2 t + 2 , x 2 t + 1 ) } ) ψ ( max { p ( x 2 t , x 2 t + 1 ) , p ( x 2 t + 2 , x 2 t + 1 ) } ) .

If

max { p ( x 2 t , x 2 t + 1 ) , p ( x 2 t + 2 , x 2 t + 1 ) } =p( x 2 t + 2 , x 2 t + 1 ),

then

ψ ( p ( x 2 t + 1 , x 2 t + 2 ) ) ψ ( p ( x 2 t + 2 , x 2 t + 1 ) ) ϕ ( p ( x 2 t + 2 , x 2 t + 1 ) ) .

Therefore, ϕ(p( x 2 t + 1 , x 2 t + 2 ))=0, and hence p( x 2 t + 1 , x 2 t + 2 )=0. By ( p 1 ) and ( p 2 ), we have x 2 t + 1 = x 2 t + 2 , which is a contradiction. Therefore,

max { p ( x 2 t , x 2 t + 1 ) , p ( x 2 t + 2 , x 2 t + 1 ) } =p( x 2 t , x 2 t + 1 ).

Hence,

p( x n + 1 , x n + 2 )=p( x 2 t + 2 , x 2 t + 1 )p( x 2 t , x 2 t + 1 )=p( x n , x n + 1 )
(2.2)

and

ψ ( p ( x n + 1 , x n + 2 ) ) ψ ( p ( x n , x n + 1 ) ) ϕ ( p ( x n , x n + 1 ) ) .
(2.3)

If n is odd, then n=2t+1 for some tN. By (2.1), we have

ψ ( p ( x n + 1 , x n + 2 ) ) = ψ ( p ( x 2 t + 2 , x 2 t + 3 ) ) = ψ ( p ( x 2 t + 3 , x 2 t + 2 ) ) = ψ ( p ( T x 2 t + 2 , T x 2 t + 1 ) ) ψ ( max { p ( x 2 t + 2 , x 2 t + 1 ) , p ( T x 2 t + 2 , x 2 t + 2 ) , p ( T x 2 t + 1 , x 2 t + 1 ) , 1 2 ( p ( x 2 t + 2 , T x 2 t + 1 ) + p ( T x 2 t + 2 , x 2 t + 1 ) ) } ) ϕ ( max { p ( x 2 t + 2 , x 2 t + 1 ) , p ( T x 2 t + 1 , x 2 t + 1 ) } ) = ψ ( max { p ( x 2 t + 3 , x 2 t + 2 ) , p ( x 2 t + 2 , x 2 t + 1 ) , 1 2 ( p ( x 2 t + 2 , x 2 t + 2 ) + p ( x 2 t + 3 , x 2 t + 1 ) ) } ) ϕ ( max { p ( x 2 t + 2 , x 2 t + 1 ) , p ( x 2 t + 2 , x 2 t + 1 ) } ) .

By ( p 4 ), we have

ψ ( p ( x n + 1 , x n + 2 ) ) = ψ ( p ( x 2 t + 3 , x 2 t + 2 ) ) ψ ( max { p ( x 2 t + 3 , x 2 t + 2 ) , p ( x 2 t + 2 , x 2 t + 1 ) , 1 2 ( p ( x 2 t + 3 , x 2 t + 2 ) + p ( x 2 t + 2 , x 2 t + 1 ) ) } ) ϕ ( max { p ( x 2 t + 2 , x 2 t + 1 ) , p ( T x 2 t + 1 , x 2 t + 1 ) } ) ψ ( max { p ( x 2 t + 3 , x 2 t + 2 ) , p ( x 2 t + 2 , x 2 t + 1 ) } ) ϕ ( max { p ( x 2 t + 2 , x 2 t + 1 ) , p ( T x 2 t + 1 , x 2 t + 1 ) } ) ψ ( max { p ( x 2 t + 3 , x 2 t + 2 ) , p ( x 2 t + 2 , x 2 t + 1 ) } ) .

If

max { p ( x 2 t + 3 , x 2 t + 2 ) , p ( x 2 t + 2 , x 2 t + 1 ) } =p( x 2 t + 3 , x 2 t + 2 ),

then

ϕ ( p ( x 2 t + 3 , x 2 t + 2 ) ) ψ ( p ( x 2 t + 3 , x 2 t + 2 ) ) ϕ ( p ( x 2 t + 2 , x 2 t + 1 ) ) .

Therefore, ϕ(p( x 2 t + 2 , x 2 t + 1 ))=0, and hence p( x 2 t + 3 , x 2 t + 2 )=0. By ( p 1 ) and ( p 2 ), we have x 2 t + 2 = x 2 t + 1 , which is a contradiction. Therefore,

max { p ( x 2 t + 3 , x 2 t + 2 ) , p ( x 2 t + 2 , x 2 t + 1 ) } =p( x 2 t + 2 , x 2 t + 1 ).

Hence,

(2.4)
(2.5)

From (2.2) and (2.4), we have {p( x n + 1 , x n ):nN} is a nonincreasing sequence and hence there exists r0 such that

lim n + p( x n , x n + 1 )=r.

Also, from (2.3) and (2.5), we have

ψ ( p ( x n + 2 , x n + 1 ) ) ψ ( p ( x n , x n + 1 ) ) ϕ ( p ( x n , x n + 1 ) ) nN.
(2.6)

Letting n+ in (2.6) and using the fact that ψ and ϕ are continuous, we get that

ψ(r)ψ(r)ϕ(r).

Therefore, ϕ(r)=0 and hence r=0. Thus

lim n + p( x n , x n + 1 )=0.
(2.7)

By ( p 2 ), we get that

lim n + p( x n , x n )=0.
(2.8)

Since d p (x,y)2p(x,y) for all x,yX, we get that

lim n + d p ( x n , x n + 1 )=0.
(2.9)

Next, we show that { x n } is a Cauchy sequence in the metric space (AB, d p ). It is sufficient to show that { x 2 n } is a Cauchy sequence in (AB, d p ). Suppose the contrary; that is, { x 2 n } is not a Cauchy sequence in (AB, d p ). Then there exists ϵ>0 for which we can find two subsequences { x 2 m ( i ) } and { x 2 n ( i ) } of { x 2 n } such that n(i) is the smallest index for which

n(i)>m(i)>i, d p ( x 2 m ( i ) , x 2 n ( i ) )ϵ.
(2.10)

This means that

d p ( x 2 m ( i ) , x 2 n ( i ) 2 )<ϵ.
(2.11)

From (2.10), (2.11) and the triangular inequality, we get that

ϵ d p ( x 2 m ( i ) , x 2 n ( i ) ) d p ( x 2 m ( i ) , x 2 n ( i ) 2 ) + d p ( x 2 n ( i ) 2 , x 2 n ( i ) 1 ) + d p ( x 2 n ( i ) 1 , x 2 n ( i ) ) < ϵ + d p ( x 2 n ( i ) 2 , x 2 n ( i ) 1 ) + d p ( x 2 n ( i ) 1 , x 2 n ( i ) ) .

On letting i+ in the above inequalities and using (2.9), we have

lim i + d p ( x 2 m ( i ) , x 2 n ( i ) )=ϵ.
(2.12)

Again, from (2.10) and the triangular inequality, we get that

ϵ d p ( x 2 m ( i ) , x 2 n ( i ) ) d p ( x 2 n ( i ) , x 2 n ( i ) 1 ) + d p ( x 2 n ( i ) 1 , x 2 m ( i ) ) d p ( x 2 n ( i ) , x 2 n ( i ) 1 ) + d p ( x 2 n ( i ) 1 , x 2 m ( i ) + 1 ) + d p ( x 2 m ( i ) + 1 , x 2 m ( i ) ) d p ( x 2 n ( i ) , x 2 n ( i ) 1 ) + d p ( x 2 n ( i ) 1 , x 2 m ( i ) ) + 2 d p ( x 2 m ( i ) + 1 , x 2 m ( i ) ) 2 d p ( x 2 n ( i ) , x 2 n ( i ) 1 ) + d p ( x 2 n ( i ) , x 2 m ( i ) ) + 2 d p ( x 2 m ( i ) + 1 , x 2 m ( i ) ) .

Letting i+ in the above inequalities and using (2.9) and (2.12), we get that

lim i + d p ( x 2 m ( i ) , x 2 n ( i ) ) = lim i + d p ( x 2 m ( i ) + 1 , x 2 n ( i ) 1 ) = lim i + d p ( x 2 m ( i ) + 1 , x 2 n ( i ) ) = lim i + d p ( x 2 m ( i ) , x 2 n ( i ) 1 ) = ϵ .

Since

d p (x,y)=2p(x,y)p(x,x)p(y,y)

for all x,yX, then

lim i + p ( x 2 m ( i ) , x 2 n ( i ) ) = lim i + p ( x 2 m ( i ) + 1 , x 2 n ( i ) 1 ) = lim i + p ( x 2 m ( i ) + 1 , x 2 n ( i ) ) = lim i + p ( x 2 m ( i ) , x 2 n ( i ) 1 ) = ϵ 2 .

By (2.1), we have

ψ ( p ( x 2 m ( i ) + 1 , x 2 n ( i ) ) ) = ψ ( p ( T x 2 m ( i ) , T x 2 n ( i ) 1 ) ) ψ ( max { p ( x 2 m ( i ) , x 2 n ( i ) 1 ) , p ( x 2 m ( i ) , T x 2 m ( i ) ) , p ( x 2 n ( i ) 1 , T x 2 n ( i ) 1 ) , 1 2 ( p ( x 2 m ( i ) , T x 2 n ( i ) 1 ) + p ( x 2 n ( i ) 1 , T x 2 m ( i ) ) ) } ) ϕ ( max { p ( x 2 m ( i ) , x 2 n ( i ) 1 ) , p ( x 2 n ( i ) 1 , T x 2 n ( i ) 1 ) } ) = ψ ( max { p ( x 2 m ( i ) , x 2 n ( i ) 1 ) , p ( x 2 m ( i ) , x 2 m ( i ) + 1 ) , p ( x 2 n ( i ) 1 , x 2 n ( i ) ) , 1 2 ( p ( x 2 m ( i ) , x 2 n ( i ) ) + p ( x 2 n ( i ) 1 , x 2 m ( i ) + 1 ) ) } ) ϕ ( max { p ( x 2 m ( i ) , x 2 n ( i ) 1 ) , p ( x 2 n ( i ) 1 , x 2 n ( i ) ) } ) .

Letting i+ and using the continuity of ϕ and ψ, we get that

ψ ( ϵ 2 ) ψ ( ϵ 2 ) ϕ ( ϵ 2 ) .

Therefore, we get that ϕ( ϵ 2 )=0. Hence, ϵ=0 is a contradiction. Thus { x n } is a Cauchy sequence in (AB, d p ). Since (X,p) is complete and AB is a closed subspace of (X,p), then we have (AB,p) is complete. From Lemma 1, the sequence { x n } converges in the metric space (AB, d p ), say lim n d p ( x n ,u)=0. Again from Lemma 1, we have

p(u,u)= lim n p( x n ,u)= lim n , m p( x n , x m ).
(2.13)

Moreover, since { x n } is a Cauchy sequence in the metric space (AB, d p ), we have

lim n , m d p ( x n , x m )=0.
(2.14)

From the definition of d p we have

d p ( x n , x m )=2p( x n , x m )p( x n , x n )p( x m , x m ).

Letting n,m+ in the above equality and using (2.8) and (2.14), we get

lim n , m p( x n , x m )=0.

Thus by (2.13), we have

lim n + p( x n ,u)=p(u,u)=0.
(2.15)

Since p( x 2 n ,u)0=p(u,u), { x 2 n } is a sequence in A, and A is closed in (X,p), we have uA. Similarly, we have uB, that is uAB. Again, from the definition of p, we have

p ( x n , T u ) p ( x n , u ) + p ( u , T u ) p ( u , u ) p ( x n , u ) + p ( u , x n ) + p ( x n , T u ) p ( x n , x n ) p ( u , u ) .

Letting n+ in the above inequalities and using (2.9) and (2.15), we get that

lim n + p( x n ,Tu)=p(u,Tu).

Now, we claim that Tu=u.

Since x 2 n A and uB, by (2.1) we have

ψ ( p ( x 2 n + 1 , T u ) ) = ψ ( p ( T x 2 n , T u ) ) ψ ( max { p ( x 2 n , u ) , p ( T x 2 n , x 2 n ) , p ( T u , u ) , 1 2 ( p ( x 2 n , T u ) + p ( u , T x 2 n ) ) } ) ϕ ( max { p ( x 2 n , u ) , p ( T u , u ) } ) = ψ ( max { p ( x 2 n , u ) , p ( x 2 n , x 2 n + 1 ) , p ( T u , u ) , 1 2 ( p ( x 2 n , T u ) + p ( u , x 2 n + 1 ) ) } ) ϕ ( max { p ( x 2 n , u ) , p ( u , T u ) } ) .

Letting n+, we get that

ψ ( p ( u , T u ) ) ψ ( p ( u , T u ) ) ϕ ( p ( u , T u ) ) .

Therefore, ϕ(p(u,Tu))=0. Since ϕ is an altering distance function, p(u,Tu)=0, that is, u=Tu.

Therefore, u is a fixed point of T. To prove the uniqueness of the fixed point, we let v be any other fixed point of T in AB. It is an easy matter to prove that p(v,v)=0. Now, we prove that u=v. Since uABA and vABB, we have

ψ ( p ( u , v ) ) = ψ ( p ( T u , T v ) ) ψ ( max { p ( u , v ) , p ( u , u ) , p ( v , v ) } ) ϕ ( max { p ( u , v ) , p ( v , v ) } ) = ψ ( p ( u , v ) ) ϕ ( p ( u , v ) ) .

Thus ϕ(p(u,v))=0 and hence p(u,v)=0. Therefore, u=v. □

Taking ψ= I [ 0 , + ) (the identity function) in Theorem 5, we have the following result.

Corollary 1 Let A and B be nonempty closed subsets of a complete partial metric space (X,p). Let T:XX be a mapping such that AB has a cyclic representation w.r.t. T. Suppose there exists an altering distance function ϕ such that

p ( T x , T y ) max { p ( x , y ) , p ( x , T x ) , p ( y , T y ) , 1 2 ( p ( x , T y ) + p ( T x , y ) ) } ϕ ( max { p ( x , y ) , p ( y , T y ) } )

for all xA and yB. Then T has a unique fixed point uAB.

Corollary 2 Let A and B be nonempty closed subsets of a complete partial metric space (X,p). Let T:XX be a mapping such that AB has a cyclic representation w.r.t. T. Suppose there exists an altering distance function ϕ such that

p(Tx,Ty)max { p ( x , y ) , p ( x , T x ) , p ( y , T y ) } ϕ ( max { p ( x , y ) , p ( x , T x ) , p ( y , T y ) } )

for all xA and yB. Then T has a unique fixed point uAB.

Now, we introduce an example to support the usability of our results.

Example 1 Let X=[0,1]. Define the partial metric p on X by

p(x,y)={ 0 , if  x = y ; max { x , y } , if  x y .

Also, define the mapping T:XX by T(x)= x 2 1 + x and the functions ψ,ϕ:[0,+)[0,+) by ψ(t)=2t and ϕ(t)= t 1 + 2 t . Take A=[0, 1 2 ] and B=[0,1]. Then

  1. (1)

    (X,p) is a complete partial metric space.

  2. (2)

    AB has a cyclic representation w.r.t. T.

  3. (3)

    For all xA and yB, we have

    ψ ( p ( T x , T y ) ) ψ ( max { p ( x , y ) , p ( x , T x ) , p ( y , T y ) , 1 2 ( p ( x , T y ) + p ( T x , y ) ) } ) ϕ ( max { p ( x , y ) , p ( y , T y ) } ) .

Proof Note that TA=[0, 1 6 ]B and TB=[0, 1 2 ]A. Thus AB has a cyclic representation of T. To prove (3), given xA and yB, without loss of generality, we may assume that xy. So,

ψ ( p ( T x , T y ) ) = ψ ( p ( x 2 1 + x , y 2 1 + y ) ) = ψ ( y 2 1 + y ) = 2 y 2 1 + y , ψ ( max { p ( x , y ) , p ( x , T x ) , p ( y , T y ) , 1 2 ( P ( x , T y ) + p ( T x , y ) ) } ) = ψ ( max { y , p ( x , x 2 1 + x ) , p ( y , y 2 1 + y ) , 1 2 ( p ( x , y 2 1 + y ) + p ( x 2 1 + x , y ) ) } ) ψ ( y ) = 2 y ,

and

ϕ ( max { p ( x , y ) , p ( y , T y ) } ) =ϕ ( max { y , p ( y , y 2 1 + y ) } ) =ϕ(y)= y 1 + 2 y .

Since

2 y 2 1 + y 2y y 1 + 2 y ,

we have

ψ ( p ( T x , T y ) ) ψ ( max { p ( x , y ) , p ( x , T x ) , p ( y , T y ) , 1 2 ( p ( x , T y ) + p ( T x , y ) ) } ) ϕ ( max { p ( x , y ) , p ( y , T y ) } ) .

 □

Note that Example 1 satisfies all the hypotheses of Theorem 5.

3 Application

Denote by Λ the set of functions μ:[0,+)[0,+) satisfying the following hypotheses:

(h1) μ is a Lebesgue-integrable mapping on each compact of [0,+).

(h2) For every ϵ>0, we have

0 ϵ μ(t)dt>0.

Theorem 6 Let A and B be nonempty closed subsets of a complete partial metric space (X,p). Let T:XX be a mapping such that AB has a cyclic representation w.r.t. T. Suppose that for xA and yB, we have

0 p ( T x , T y ) μ 1 ( t ) d t 0 max { p ( x , y ) , p ( x , T x ) , p ( y , T y ) , 1 2 ( p ( x , T y ) + p ( T x , y ) ) } μ 1 ( t ) d t 0 max { p ( x , y ) , p ( y , T y ) } μ 2 ( t ) d t ,

where μ 1 , μ 2 Λ. Then T has a unique fixed point uAB.

Proof Follows from Theorem 5 by defining ψ,ϕ:[0,+)[0,+) via ψ(t)= 0 t μ 1 (s)ds and ϕ(t)= 0 t μ 2 (s)ds and noting that ψ, ϕ are altering distance functions. □

Remark 2 Theorem 2.1 of [23] is a special case of Corollary 2.

Remark 3 Theorem 2.3 of [23] is a special case of Corollary 2.

Remark 4 Theorem 2.4 of [23] is a special case of Corollary 2.

Remark 5 Theorem 1.1 of [22] is a special case of Corollary 2.

References

  1. Banach S: Sur les operations dans les ensembles et leur application aux equation sitegrales. Fundam. Math. 1922, 3: 133–181.

    Google Scholar 

  2. Matthews SG: Partial metric topology. Ann. N.Y. Acad. Sci. 1994, 728: 183–197. Proc. 8th Summer Conference on General Topology and Applications 10.1111/j.1749-6632.1994.tb44144.x

    Article  MathSciNet  Google Scholar 

  3. Abdeljawad T, Karapinar E, Taş K: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 2011, 24: 1900–1904. 10.1016/j.aml.2011.05.014

    Article  MathSciNet  Google Scholar 

  4. Abdeljawad T, Karapinar E, Taş K: A generalized contraction principle with control functions on partial metric spaces. Comput. Math. Appl. 2012, 6: 716–719.

    Article  Google Scholar 

  5. Abdeljawad T: Fixed points for generalized weakly contractive mappings in partial metric spaces. Math. Comput. Model. 2011, 54: 2923–2927. 10.1016/j.mcm.2011.07.013

    Article  MathSciNet  Google Scholar 

  6. Altun I, Erduran A: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 508730

    Google Scholar 

  7. Altun I, Sola F, Simsek H: Generalized contractions on partial metric spaces. Topol. Appl. 2010, 157: 2778–2785. 10.1016/j.topol.2010.08.017

    Article  MathSciNet  Google Scholar 

  8. Aydi H: Some fixed point results in ordered partial metric spaces. J. Nonlinear Sci. Appl 2011, 4: 1–12.

    MathSciNet  Google Scholar 

  9. Aydi H: Some coupled fixed point results on partial metric spaces. Int. J. Math. Math. Sci. 2011., 2011: Article ID 647091

    Google Scholar 

  10. Aydi H: Fixed point theorems for generalized weakly contractive condition in ordered partial metric spaces. J. Nonlinear Anal. Optim. 2011, 2: 33–48.

    MathSciNet  Google Scholar 

  11. Aydi H, Karapinar E, Shatanawi W:Coupled fixed point results for (ψ,φ)-weakly contractive condition in ordered partial metric spaces. Comput. Math. Appl. 2011, 62: 4449–4460. 10.1016/j.camwa.2011.10.021

    Article  MathSciNet  Google Scholar 

  12. Golubović Z, Kadelburg Z, Radenović S: Coupled coincidence points of mappings in ordered partial metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 192581

    Google Scholar 

  13. Heckmann R: Approximation of metric spaces by partial metric spaces. Appl. Categ. Struct. 1999, 7: 71–83. 10.1023/A:1008684018933

    Article  MathSciNet  Google Scholar 

  14. Karapinar, E: Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory Appl. (2011, in press)

    Google Scholar 

  15. Karapinar E, Erhan IM: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 2011. doi:10.1016/j.aml.2011.05.013

    Google Scholar 

  16. Nashine, HK, Kadelburg, Z, Radenović, S: Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces. Math. Comput. Model. (2012, in press)

    Google Scholar 

  17. Oltra S, Valero O: Banach’s fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 2004, 36: 17–26.

    MathSciNet  Google Scholar 

  18. Romaguera S: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 493298

    Google Scholar 

  19. Samet B, Rajović M, Lazović R, Stoiljković R: Common fixed point results for nonlinear contractions in ordered partial metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 71

    Google Scholar 

  20. Shatanawi W, Nashine HK: A generalization of Banach’s contraction principle for nonlinear contraction in a partial metric space. J. Nonlinear Sci. Appl 2012, 5: 37–43.

    MathSciNet  Google Scholar 

  21. Valero O: On Banach fixed point theorems for partial metric spaces. Appl. Gen. Topol. 2005, 6: 229–240.

    Article  MathSciNet  Google Scholar 

  22. Kirk WA, Srinavasan PS, Veeramani P: Fixed points for mapping satisfying cyclical contractive conditions. Fixed Point Theory 2003, 4: 79–89.

    MathSciNet  Google Scholar 

  23. Karapinar E, Erhan IM: Best proximity point on different type contractions. Appl. Math. Inf. Sci. 2011, 5: 342–353.

    MathSciNet  Google Scholar 

  24. Karapinar E, Erhan IM, Ulus AY: Fixed point theorem for cyclic maps on partial metric spaces. Appl. Math. Inf. Sci. 2012, 6: 239–244.

    MathSciNet  Google Scholar 

  25. Karapinar E, Erhan IM: Cyclic contractions and fixed point theorems. Filomat 2012, 26: 777–782.

    Article  MathSciNet  Google Scholar 

  26. Agarwal RP, Alghamdi MA, Shahzad N: Fixed point theory for cyclic generalized contractions in partial metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 40

    Google Scholar 

  27. Khan MS, Swaleh M, Sessa S: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 1984, 30: 1–9. 10.1017/S0004972700001659

    Article  MathSciNet  Google Scholar 

  28. Cho YJ, Rhoades BE, Saadati R, Samet B, Shatanawi W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl. 2012., 2012: Article ID 8. doi:10.1186/1687–1812–2012–8

    Google Scholar 

  29. Aydi H, Postolache M, Shatanawi W: Coupled fixed point results for (ψ,ϕ)-weakly contractive mappings in ordered G -metric spaces. Comput. Math. Appl. 2012, 63: 298–309. 10.1016/j.camwa.2011.11.022

    Article  MathSciNet  Google Scholar 

  30. Lakzian H, Samet B:Fixed points for (ψ,ϕ)-weakly contractive mappings in generalized metric spaces. Appl. Math. Lett. 2012, 25: 902–906. 10.1016/j.aml.2011.10.047

    Article  MathSciNet  Google Scholar 

  31. Shatanawi, W, Al-Rawashdeh, A: Common fixed points of almost generalized (ψ,ϕ)-contractive mappings in ordered metric spaces. Fixed Point Theory Appl. (accepted)

  32. Shatanawi W, Mustafa Z, Tahat N: Some coincidence point theorems for nonlinear contraction in ordered metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 68

    Google Scholar 

  33. Shatanawi W, Samet B:On (ψ,ϕ)-weakly contractive condition in partially ordered metric spaces. Comput. Math. Appl. 2011, 62: 3204–3214. 10.1016/j.camwa.2011.08.033

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the Editor and the referees for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Manro.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Shatanawi, W., Manro, S. Fixed point results for cyclic (ψ,ϕ,A,B)-contraction in partial metric spaces. Fixed Point Theory Appl 2012, 165 (2012). https://doi.org/10.1186/1687-1812-2012-165

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2012-165

Keywords