# Implicit eigenvalue problems for maximal monotone operators

## Abstract

We study the implicit eigenvalue problem of the form

$0âˆˆTx+C\left(\mathrm{Î»},x\right),$

where T is a maximal monotone multi-valued operator and the operator C satisfies condition (${S}_{+}$) or (${\stackrel{Ëœ}{S}}_{+}$). In a regularization method by the duality operator, we use the degree theories of Kartsatos and Skrypnik upon conditions of C as well as Browderâ€™s degree. There are two cases to consider: One is that C is demicontinuous and bounded with condition (${S}_{+}$); and the other is that C is quasibounded and densely defined with condition (${\stackrel{Ëœ}{S}}_{+}$). Moreover, the eigenvalue problem $0âˆˆTx+\mathrm{Î»}Cx$ is also discussed.

## 1 Introduction and preliminaries

A general eigenvalue theory for maximal monotone operators has been developed in various ways with applications to partial differential equations; see [5â€“7, 10â€“12]. A key tool was topological degrees for appropriate classes of operators in, e.g., [2â€“4, 8, 9, 14â€“16] and the method of approach was in many cases to use regularization by means of the duality operator, while in [6, 11] the eigenvalue problem was solved by a transformed equation in terms of the approximant without using the regularization method.

Let X be a real reflexive Banach space with dual space ${X}^{âˆ—}$ and $T:D\left(T\right)âŠ‚Xâ†’{2}^{{X}^{âˆ—}}$ be a maximal monotone multi-valued operator. When the resolvents of T or the single-valued operator C are compact, the solvability of the nonlinear inclusion

$0âˆˆTx+\mathrm{Î»}Cx$

was studied in [5, 6, 10, 12] by applying the Leray-Schauder degree theory for compact operators. More generally, implicit eigenvalue problems were considered in [7, 10], where the single-valued and compact case was dealt with in [7]. In direction of [10], we study the implicit eigenvalue problem of the form

$0âˆˆTx+C\left(\mathrm{Î»},x\right),$

where $C:\left[0,\mathrm{Î›}\right]Ã—Mâ†’{X}^{âˆ—}$ satisfies condition (${S}_{+}$) or (${\stackrel{Ëœ}{S}}_{+}$). As in [12], we adopt property ($\mathcal{P}$) about the solvability of the related equation

${T}_{s}x+C\left(\mathrm{Î»},x\right)+\mathrm{Îµ}{J}_{\mathrm{Ïˆ}}x=0,$

where ${T}_{s}$ is the Brezis-Crandall-Pazy approximant introduced in [1] and ${J}_{\mathrm{Ïˆ}}$ is the (normalized) duality operator with a gauge function Ïˆ.

In the present paper, we divide our investigation into two cases to apply suitable degree theory. One case deals with demicontinuous bounded operators satisfying condition (${S}_{+}$) with the aid of the most elementary degree theory of Skrypnik [14], in comparison with [10]. The other case is concerned with quasibounded densely defined operators satisfying condition (${\stackrel{Ëœ}{S}}_{+}$), where the degree theory of Kartsatos and Skrypnik [8, 9] for densely defined operators is used. In more concrete situations, the eigenvalue problem $0âˆˆTx+\mathrm{Î»}Cx$ is discussed. We point out that Browderâ€™s degree in [3] for the reduced simple operator ${T}_{s}+\mathrm{Îµ}{J}_{\mathrm{Ïˆ}}$ under the homotopy plays a crucial role in the proof of our results presented here.

Let X be a real Banach space with its dual ${X}^{âˆ—}$, Î© a nonempty subset of X, and Y another real Banach space. An operator $F:\mathrm{Î©}â†’Y$ is said to be bounded if F maps bounded subsets of Î© into bounded subsets of Y. F is said to be demicontinuous if for every ${x}_{0}âˆˆ\mathrm{Î©}$ and for every sequence $\left\{{x}_{n}\right\}$ in Î© with ${x}_{n}â†’{x}_{0}$, we have $F{x}_{n}â‡€F{x}_{0}$. Here the symbol â†’ (â‡€) stands for strong (weak) convergence.

A multi-valued operator $T:D\left(T\right)âŠ‚Xâ†’{2}^{{X}^{âˆ—}}$ is said to be monotone if

where denotes the effective domain of T. T is said to be maximal monotone if it is monotone and it follows from $\left(x,{u}^{âˆ—}\right)âˆˆXÃ—{X}^{âˆ—}$ and

that $xâˆˆD\left(T\right)$ and ${u}^{âˆ—}âˆˆTx$.

We say that an operator $T:D\left(T\right)âŠ‚Xâ†’{X}^{âˆ—}$ satisfies condition (${S}_{+}$) if for every sequence $\left\{{x}_{n}\right\}$ in $D\left(T\right)$ with ${x}_{n}â‡€{x}_{0}$ and

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆT{x}_{n},{x}_{n}âˆ’{x}_{0}ã€‰â‰¤0,$

we have ${x}_{n}â†’{x}_{0}$.

We say that $T:D\left(T\right)âŠ‚Xâ†’{X}^{âˆ—}$ satisfies condition (${\stackrel{Ëœ}{S}}_{+}$) if for every sequence $\left\{{x}_{n}\right\}$ in $D\left(T\right)$ with ${x}_{n}â‡€{x}_{0}$, $T{x}_{n}â‡€{h}_{0}^{âˆ—}$ and

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆT{x}_{n},{x}_{n}âˆ’{x}_{0}ã€‰â‰¤0,$

we have ${x}_{n}â†’{x}_{0}$, ${x}_{0}âˆˆD\left(T\right)$ and $T{x}_{0}={h}_{0}^{âˆ—}$.

We say that a multi-valued operator $T:D\left(T\right)âŠ‚Xâ†’{2}^{{X}^{âˆ—}}$ satisfies condition (${S}_{q}$) on a set $MâŠ‚D\left(T\right)$ if for every sequence $\left\{{x}_{n}\right\}$ in M with ${x}_{n}â‡€{x}_{0}$ and every sequence $\left\{{u}_{n}^{âˆ—}\right\}$ in ${X}^{âˆ—}$ with ${u}_{n}^{âˆ—}â†’{u}^{âˆ—}$ where ${u}_{n}^{âˆ—}âˆˆT{x}_{n}$, we have ${x}_{n}â†’{x}_{0}$.

Throughout this paper, X will always be an infinite dimensional real reflexive Banach space which has been renormed so that X and its dual ${X}^{âˆ—}$ are locally uniformly convex.

A function $\mathrm{Ïˆ}:\left[0,\mathrm{âˆž}\right)â†’\left[0,\mathrm{âˆž}\right)$ is called a gauge function if Ïˆ is continuous, strictly increasing, $\mathrm{Ïˆ}\left(0\right)=0$ and $\mathrm{Ïˆ}\left(t\right)â†’\mathrm{âˆž}$ as $tâ†’\mathrm{âˆž}$. An operator ${J}_{\mathrm{Ïˆ}}:Xâ†’{X}^{âˆ—}$ is called a duality operator with a gauge function Ïˆ if

If Ïˆ is the identity map I, then $J:={J}_{I}$ is called a normalized duality operator. It is known in [13] that ${J}_{\mathrm{Ïˆ}}$ is continuous, bounded, surjective, strictly monotone, maximal monotone and satisfies condition (${S}_{+}$).

Given a maximal monotone operator $T:D\left(T\right)âŠ‚Xâ†’{2}^{{X}^{âˆ—}}$, $xâˆˆX$ and $s>0$, there exist unique elements ${x}_{s}âˆˆD\left(T\right)$ and ${u}_{s}^{âˆ—}âˆˆT{x}_{s}$ such that

$J\left({x}_{s}âˆ’x\right)+s{u}_{s}^{âˆ—}=0.$

Two operators ${J}_{s}:Xâ†’D\left(T\right)$ and ${T}_{s}:Xâ†’{X}^{âˆ—}$ defined by

are called the Brezis-Crandall-Pazy approximants. It is known in [1] that ${J}_{s}$ is continuous and bounded and ${T}_{s}$ is demicontinuous, bounded, and maximal monotone. It is easy to see that ${J}_{s}=Iâˆ’s{J}^{âˆ’1}{T}_{s}$ and ${T}_{s}xâˆˆT{J}_{s}x$ for $xâˆˆX$.

Let $C:\left[0,\mathrm{Î›}\right]Ã—Mâ†’{X}^{âˆ—}$ be an operator, where M is a subset of X. Then $C\left(t,x\right)$ is said to be continuous in t uniformly with respect to $xâˆˆM$ if for every ${t}_{0}âˆˆ\left[0,\mathrm{Î›}\right]$ and for every sequence $\left\{{t}_{n}\right\}$ in $\left[0,\mathrm{Î›}\right]$ with ${t}_{n}â†’{t}_{0}$, we have $C\left({t}_{n},x\right)â†’C\left({t}_{0},x\right)$ uniformly with respect to $xâˆˆM$.

We say that C satisfies condition (${S}_{+}$) if for every $\mathrm{Î»}âˆˆ\left(0,\mathrm{Î›}\right]$ and for every sequence $\left\{{x}_{n}\right\}$ in M with ${x}_{n}â‡€{x}_{0}$ and

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left(\mathrm{Î»},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰â‰¤0,$

we have ${x}_{n}â†’{x}_{0}$.

We say that C satisfies condition (${\stackrel{Ëœ}{S}}_{+}$) if for every $\mathrm{Î»}âˆˆ\left(0,\mathrm{Î›}\right]$ and for every sequence $\left\{{x}_{n}\right\}$ in M with ${x}_{n}â‡€{x}_{0}$, $C\left(\mathrm{Î»},{x}_{n}\right)â‡€{h}_{0}^{âˆ—}$ and

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left(\mathrm{Î»},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰â‰¤0,$

we have ${x}_{n}â†’{x}_{0}$, ${x}_{0}âˆˆM$ and $C\left(\mathrm{Î»},{x}_{0}\right)={h}_{0}^{âˆ—}$.

We often need the following demiclosedness property of maximal monotone operators given in [17].

Lemma 1.1 Let $T:D\left(T\right)âŠ‚Xâ†’{2}^{{X}^{âˆ—}}$ be a maximal monotone multi-valued operator. Then for every sequence $\left\{{x}_{n}\right\}$ in $D\left(T\right)$, ${x}_{n}â†’x$ in X and ${u}_{n}^{âˆ—}â‡€{u}^{âˆ—}$ in ${X}^{âˆ—}$, where ${u}_{n}^{âˆ—}âˆˆT{x}_{n}$, imply that $xâˆˆD\left(T\right)$ and ${u}^{âˆ—}âˆˆTx$.

## 2 Implicit eigenvalue problem about demicontinuous operators

In this section, we are concerned with the implicit eigenvalue problem for perturbed maximal monotone operators in reflexive Banach spaces by applying the degree theories of Skrypnik and Browder for nonlinear operators of monotone type.

In what follows, for a bounded subset Î© of X, let $\stackrel{Â¯}{\mathrm{Î©}}$ and âˆ‚ Î© denote the closure and the boundary of Î© in X, respectively. Following Browder [2, 3], a homotopy $H:\left[0,1\right]Ã—\stackrel{Â¯}{\mathrm{Î©}}â†’{X}^{âˆ—}$ is said to be of class (${S}_{+}$) if the following condition holds:

For every sequence $\left\{{u}_{j}\right\}$ in $\stackrel{Â¯}{\mathrm{Î©}}$ with ${u}_{j}â‡€{u}_{0}$ and every sequence $\left\{{t}_{j}\right\}$ in $\left[0,1\right]$ with ${t}_{j}â†’{t}_{0}$ such that

$\underset{jâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆH\left({t}_{j},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰â‰¤0,$

we have ${u}_{j}â†’{u}_{0}$ and $H\left({t}_{j},{u}_{j}\right)â‡€H\left({t}_{0},{u}_{0}\right)$.

Kartsatos and Skrypnik [10] obtained the following result by using Browderâ€™s degree in [4] for multi-valued operators. As in [12], we adopt property ($\mathcal{P}$) in terms of the Brezis-Crandall-Pazy approximant so that we can apply the most essential degree theory of Skrypnik [14] for single-valued operators to prove in a direct method.

Theorem 2.1 Let Î© be a bounded open set in X with $0âˆˆ\mathrm{Î©}$. Let $T:D\left(T\right)âŠ‚Xâ†’{2}^{{X}^{âˆ—}}$ be a maximal monotone multi-valued operator with $0âˆˆD\left(T\right)$ and $0âˆˆT\left(0\right)$. Let Î›, ${s}_{0}$, and ${\mathrm{Îµ}}_{0}$ be three positive numbers. Suppose that $C:\left[0,\mathrm{Î›}\right]Ã—\stackrel{Â¯}{\mathrm{Î©}}â†’{X}^{âˆ—}$ is demicontinuous, bounded and satisfies condition (${S}_{+}$) such that $C\left(0,x\right)=0$ for all $xâˆˆ\stackrel{Â¯}{\mathrm{Î©}}$ and $C\left(t,x\right)$ is continuous in t uniformly with respect to $xâˆˆ\stackrel{Â¯}{\mathrm{Î©}}$.

1. (a)

For a given $\mathrm{Îµ}>0$, assume the following property:

($\mathcal{P}$) For every $sâˆˆ\left(0,{s}_{0}\right)$, there exists a $\mathrm{Î»}âˆˆ\left(0,\mathrm{Î›}\right]$ such that the equation

${T}_{s}x+C\left(\mathrm{Î»},x\right)+\mathrm{Îµ}Jx=0$

has no solution in Î©. Then there exists a $\left({\mathrm{Î»}}_{\mathrm{Îµ}},{x}_{\mathrm{Îµ}}\right)âˆˆ\left(0,\mathrm{Î›}\right]Ã—\left(D\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}\right)$ such that

$0âˆˆT{x}_{\mathrm{Îµ}}+C\left({\mathrm{Î»}}_{\mathrm{Îµ}},{x}_{\mathrm{Îµ}}\right)+\mathrm{Îµ}J{x}_{\mathrm{Îµ}}.$
1. (b)

If $0âˆ‰T\left(D\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}\right)$, T satisfies condition (${S}_{q}$) on $D\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}$, and property ($\mathcal{P}$) is fulfilled for all $\mathrm{Îµ}âˆˆ\left(0,{\mathrm{Îµ}}_{0}\right]$, then there exists a $\left({\mathrm{Î»}}_{0},{x}_{0}\right)âˆˆ\left(0,\mathrm{Î›}\right]Ã—\left(D\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}\right)$ such that

$0âˆˆT{x}_{0}+C\left({\mathrm{Î»}}_{0},{x}_{0}\right).$

Proof (a) We first claim that for any $sâˆˆ\left(0,{s}_{0}\right)$, there exists a $\left({\mathrm{Î»}}_{0},{x}_{0}\right)âˆˆ\left(0,\mathrm{Î›}\right]Ã—\mathrm{âˆ‚}\mathrm{Î©}$ such that

${T}_{s}{x}_{0}+C\left({\mathrm{Î»}}_{0},{x}_{0}\right)+\mathrm{Îµ}J{x}_{0}=0.$
(2.1)

Assume on the contrary that for some $sâˆˆ\left(0,{s}_{0}\right)$ and for every $\mathrm{Î»}âˆˆ\left(0,\mathrm{Î›}\right]$, the following holds:

(2.2)

Since $\left({T}_{s}+\mathrm{Îµ}J\right)\left(0\right)=0$ and ${T}_{s}+\mathrm{Îµ}J$ is injective by the strict monotonicity of J, we have for all $xâˆˆ\mathrm{âˆ‚}\mathrm{Î©}$. Thus, (2.2) holds for all $\mathrm{Î»}âˆˆ\left[0,\mathrm{Î›}\right]$.

Consider a homotopy $H:\left[0,1\right]Ã—\stackrel{Â¯}{\mathrm{Î©}}â†’{X}^{âˆ—}$ defined by

Then H is of class (${S}_{+}$). To prove this, let $\left\{{u}_{j}\right\}$ be a sequence in $\stackrel{Â¯}{\mathrm{Î©}}$ with ${u}_{j}â‡€{u}_{0}$ and $\left\{{t}_{j}\right\}$ be a sequence in $\left[0,1\right]$ with ${t}_{j}â†’{t}_{0}$ such that

$\underset{jâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆH\left({t}_{j},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰â‰¤0.$
(2.3)

Since ${T}_{s}$ and J are monotone, it follows from

$ã€ˆH\left({t}_{j},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰=ã€ˆ{T}_{s}{u}_{j},{u}_{j}âˆ’{u}_{0}ã€‰+ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰+\mathrm{Îµ}ã€ˆJ{u}_{j},{u}_{j}âˆ’{u}_{0}ã€‰$

that

$ã€ˆH\left({t}_{j},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰â‰¥ã€ˆ{T}_{s}{u}_{0},{u}_{j}âˆ’{u}_{0}ã€‰+ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰+\mathrm{Îµ}ã€ˆJ{u}_{j},{u}_{j}âˆ’{u}_{0}ã€‰$
(2.4)

and

$ã€ˆH\left({t}_{j},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰â‰¥ã€ˆ{T}_{s}{u}_{0},{u}_{j}âˆ’{u}_{0}ã€‰+ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰+\mathrm{Îµ}ã€ˆJ{u}_{0},{u}_{j}âˆ’{u}_{0}ã€‰.$
(2.5)

By (2.3) and (2.5), we have

$\underset{jâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰â‰¤0.$
(2.6)

There are two cases to consider. If ${t}_{0}=0$, then $C\left({t}_{j}\mathrm{Î›},{u}_{j}\right)â†’0$ and so

$\underset{jâ†’\mathrm{âˆž}}{lim}ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰=0.$
(2.7)

Using (2.3), (2.4), and (2.7), we obtain

$\underset{jâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆJ{u}_{j},{u}_{j}âˆ’{u}_{0}ã€‰â‰¤0.$

Since J satisfies condition (${S}_{+}$), we have

${u}_{j}â†’{u}_{0},$

which implies by the demicontinuity of ${T}_{s}$ and C and the continuity of J

${T}_{s}{u}_{j}â‡€{T}_{s}{u}_{0},\phantom{\rule{2em}{0ex}}C\left({t}_{j}\mathrm{Î›},{u}_{j}\right)â‡€C\left(0,{u}_{0}\right),\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}J{u}_{j}â†’J{u}_{0}.$

This means that $H\left({t}_{j},{u}_{j}\right)â‡€H\left(0,{u}_{0}\right)$. Now, let ${t}_{0}>0$. We have

$ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰=ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right)âˆ’C\left({t}_{0}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰+ã€ˆC\left({t}_{0}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰,$

which implies

$\begin{array}{c}\underset{jâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left({t}_{0}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰\hfill \\ \phantom{\rule{1em}{0ex}}â‰¤\underset{jâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰+\underset{jâ†’\mathrm{âˆž}}{limâ€‰sup}\left[âˆ’ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right)âˆ’C\left({t}_{0}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰\right]\hfill \end{array}$

and hence by (2.6)

$\underset{jâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left({t}_{0}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰â‰¤\underset{jâ†’\mathrm{âˆž}}{lim}âˆ¥C\left({t}_{j}\mathrm{Î›},{u}_{j}\right)âˆ’C\left({t}_{0}\mathrm{Î›},{u}_{j}\right)âˆ¥âˆ¥{u}_{j}âˆ’{u}_{0}âˆ¥=0.$

Since C satisfies condition (${S}_{+}$), we get ${u}_{j}â†’{u}_{0}$ from which ${T}_{s}{u}_{j}â‡€{T}_{s}{u}_{0}$, $C\left({t}_{j}\mathrm{Î›},{u}_{j}\right)â‡€C\left({t}_{0}\mathrm{Î›},{u}_{0}\right)$, and $J{u}_{j}â†’J{u}_{0}$. Consequently, $H\left({t}_{j},{u}_{j}\right)â‡€H\left({t}_{0},{u}_{0}\right)$. We have just shown that the homotopy H is of class (${S}_{+}$).

We are now ready to apply the degree theory of Skrypnik [14, 15]. If ${d}_{S}$ denotes the Skrypnik degree, the homotopy invariance property of ${d}_{S}$ implies that

$\begin{array}{rcl}{d}_{S}\left({T}_{s}+C\left(\mathrm{Î»},â‹\dots \right)+\mathrm{Îµ}J,\mathrm{Î©},0\right)& =& {d}_{S}\left(H\left(t,â‹\dots \right),\mathrm{Î©},0\right)\\ =& {d}_{S}\left({T}_{s}+\mathrm{Îµ}J,\mathrm{Î©},0\right)\\ =& 1\end{array}$

for all $\mathrm{Î»}âˆˆ\left[0,\mathrm{Î›}\right]$. The last equality follows from Theorem 3 in [3], based on the fact that ${T}_{s}+\mathrm{Îµ}J$ is demicontinuous, bounded, injective, and satisfies condition (${S}_{+}$) and $ã€ˆ{T}_{s}x+\mathrm{Îµ}Jx,xã€‰â‰¥0$ for all $xâˆˆ\mathrm{âˆ‚}\mathrm{Î©}$. For every $\mathrm{Î»}âˆˆ\left(0,\mathrm{Î›}\right]$, the existence property of ${d}_{S}$ implies that there is a point x in Î© such that

${T}_{s}x+C\left(\mathrm{Î»},x\right)+\mathrm{Îµ}Jx=0,$

which contradicts property ($\mathcal{P}$). Therefore, the first claim (2.1) is true.

In view of (2.1), let $\left\{{s}_{n}\right\}$ be a sequence in $\left(0,{s}_{0}\right)$ with ${s}_{n}â†’0$ and $\left\{\left({\mathrm{Î»}}_{n},{x}_{n}\right)\right\}$ be the corresponding sequence in $\left(0,\mathrm{Î›}\right]Ã—\mathrm{âˆ‚}\mathrm{Î©}$ such that

${T}_{{s}_{n}}{x}_{n}+C\left({\mathrm{Î»}}_{n},{x}_{n}\right)+\mathrm{Îµ}J{x}_{n}=0.$
(2.8)

Without loss of generality, we may suppose that

${\mathrm{Î»}}_{n}â†’{\mathrm{Î»}}_{0},\phantom{\rule{2em}{0ex}}{x}_{n}â‡€{x}_{0},\phantom{\rule{2em}{0ex}}C\left({\mathrm{Î»}}_{n},{x}_{n}\right)â‡€{c}^{âˆ—}\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}J{x}_{n}â‡€{j}^{âˆ—},$

where ${\mathrm{Î»}}_{0}âˆˆ\left[0,\mathrm{Î›}\right]$, ${x}_{0}âˆˆX$, ${c}^{âˆ—}âˆˆ{X}^{âˆ—}$ and ${j}^{âˆ—}âˆˆ{X}^{âˆ—}$. To arrive at the conclusion of (a) in the next step, we may suppose that ${\mathrm{Î»}}_{0}âˆˆ\left(0,\mathrm{Î›}\right]$. In fact, when ${\mathrm{Î»}}_{0}=0$, we know that $0âˆ‰Tx+C\left(0,x\right)+\mathrm{Îµ}Jx$ for all $xâˆˆD\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}$ because $T+\mathrm{Îµ}J$ is injective on $D\left(T\right)âˆ©\stackrel{Â¯}{\mathrm{Î©}}$ and $0âˆˆ\left(T+\mathrm{Îµ}J\right)\left(D\left(T\right)âˆ©\mathrm{Î©}\right)$. For our aim, we will now show that

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left({\mathrm{Î»}}_{n},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰â‰¤0.$
(2.9)

Assume on the contrary that there exists a subsequence of $\left\{{x}_{n}\right\}$, denoted again by $\left\{{x}_{n}\right\}$, such that

$\underset{nâ†’\mathrm{âˆž}}{lim}ã€ˆC\left({\mathrm{Î»}}_{n},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰>0.$

Note by (2.8) and the monotonicity of J that

$ã€ˆ{T}_{{s}_{n}}{x}_{n},{x}_{n}âˆ’{x}_{0}ã€‰â‰¤âˆ’ã€ˆC\left({\mathrm{Î»}}_{n},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰âˆ’\mathrm{Îµ}ã€ˆJ{x}_{0},{x}_{n}âˆ’{x}_{0}ã€‰$

and so

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆ{T}_{{s}_{n}}{x}_{n},{x}_{n}âˆ’{x}_{0}ã€‰<0.$

Hence, it follows from ${T}_{{s}_{n}}{x}_{n}â‡€âˆ’{c}^{âˆ—}âˆ’\mathrm{Îµ}{j}^{âˆ—}$ that

$\begin{array}{rcl}\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆ{T}_{{s}_{n}}{x}_{n},{x}_{n}ã€‰& =& \underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}\left[ã€ˆ{T}_{{s}_{n}}{x}_{n},{x}_{n}âˆ’{x}_{0}ã€‰+ã€ˆ{T}_{{s}_{n}}{x}_{n},{x}_{0}ã€‰\right]\\ <& ã€ˆâˆ’{c}^{âˆ—}âˆ’\mathrm{Îµ}{j}^{âˆ—},{x}_{0}ã€‰.\end{array}$
(2.10)

Let $xâˆˆD\left(T\right)$ and ${u}^{âˆ—}âˆˆTx$ be arbitrary. Since T is monotone, ${T}_{{s}_{n}}{x}_{n}âˆˆT{J}_{{s}_{n}}{x}_{n}$, and ${J}_{{s}_{n}}=Iâˆ’{s}_{n}{J}^{âˆ’1}{T}_{{s}_{n}}$, we have

$ã€ˆ{T}_{{s}_{n}}{x}_{n}âˆ’{u}^{âˆ—},{x}_{n}âˆ’{s}_{n}{J}^{âˆ’1}{T}_{{s}_{n}}{x}_{n}âˆ’xã€‰â‰¥0,$

which implies

$ã€ˆ{T}_{{s}_{n}}{x}_{n},{x}_{n}ã€‰â‰¥{s}_{n}{âˆ¥{T}_{{s}_{n}}{x}_{n}âˆ¥}^{2}+ã€ˆ{T}_{{s}_{n}}{x}_{n},xã€‰+ã€ˆ{u}^{âˆ—},{x}_{n}âˆ’xã€‰âˆ’{s}_{n}ã€ˆ{u}^{âˆ—},{J}^{âˆ’1}{T}_{{s}_{n}}{x}_{n}ã€‰.$

Since $\left\{{T}_{{s}_{n}}{x}_{n}\right\}$ and ${J}^{âˆ’1}$ are bounded and ${s}_{n}â†’0$, we have

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰inf}ã€ˆ{T}_{{s}_{n}}{x}_{n},{x}_{n}ã€‰â‰¥ã€ˆâˆ’{c}^{âˆ—}âˆ’\mathrm{Îµ}{j}^{âˆ—},xã€‰+ã€ˆ{u}^{âˆ—},{x}_{0}âˆ’xã€‰.$
(2.11)

Combining (2.10) and (2.11), we get

(2.12)

Since T is maximal monotone, we have ${x}_{0}âˆˆD\left(T\right)$ and $âˆ’{c}^{âˆ—}âˆ’\mathrm{Îµ}{j}^{âˆ—}âˆˆT{x}_{0}$. Letting $x={x}_{0}âˆˆD\left(T\right)$ in (2.12) yields a contradiction. Thus, (2.9) holds.

Since $C\left(t,x\right)$ is continuous in t uniformly with respect to $xâˆˆ\stackrel{Â¯}{\mathrm{Î©}}$ and ${\mathrm{Î»}}_{n}â†’{\mathrm{Î»}}_{0}$, we have by (2.9)

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left({\mathrm{Î»}}_{0},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰â‰¤0,$
(2.13)

by observing that

$ã€ˆC\left({\mathrm{Î»}}_{n},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰=ã€ˆC\left({\mathrm{Î»}}_{n},{x}_{n}\right)âˆ’C\left({\mathrm{Î»}}_{0},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰+ã€ˆC\left({\mathrm{Î»}}_{0},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰.$

Since C satisfies condition (${S}_{+}$), it follows from (2.13) that

${x}_{n}â†’{x}_{0}âˆˆ\mathrm{âˆ‚}\mathrm{Î©},$

which implies by (2.8)

${T}_{{s}_{n}}{x}_{n}â‡€âˆ’C\left({\mathrm{Î»}}_{0},{x}_{0}\right)âˆ’\mathrm{Îµ}J{x}_{0}$

and as above

${J}_{{s}_{n}}{x}_{n}={x}_{n}âˆ’{s}_{n}{J}^{âˆ’1}{T}_{{s}_{n}}{x}_{n}â†’{x}_{0}.$

Since T is maximal monotone and ${T}_{{s}_{n}}{x}_{n}âˆˆT{J}_{{s}_{n}}{x}_{n}$, Lemma 1.1 implies that ${x}_{0}âˆˆD\left(T\right)$ and

$0âˆˆT{x}_{0}+C\left({\mathrm{Î»}}_{0},{x}_{0}\right)+\mathrm{Îµ}J{x}_{0}.$
1. (b)

According to the statement (a), for a sequence $\left\{{\mathrm{Îµ}}_{n}\right\}$ in $\left(0,{\mathrm{Îµ}}_{0}\right]$ with ${\mathrm{Îµ}}_{n}â†’0$, we can choose sequences $\left\{{\mathrm{Î»}}_{n}\right\}$ in $\left(0,\mathrm{Î›}\right]$, $\left\{{x}_{n}\right\}$ in $D\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}$, and $\left\{{u}_{n}^{âˆ—}\right\}$ in ${X}^{âˆ—}$ with ${u}_{n}^{âˆ—}âˆˆT{x}_{n}$ such that

${u}_{n}^{âˆ—}+C\left({\mathrm{Î»}}_{n},{x}_{n}\right)+{\mathrm{Îµ}}_{n}J{x}_{n}=0.$
(2.14)

We may suppose that

${\mathrm{Î»}}_{n}â†’{\mathrm{Î»}}_{0},\phantom{\rule{2em}{0ex}}{x}_{n}â‡€{x}_{0},\phantom{\rule{2em}{0ex}}C\left({\mathrm{Î»}}_{n},{x}_{n}\right)â‡€{c}^{âˆ—}\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}J{x}_{n}â‡€{j}^{âˆ—},$

where ${\mathrm{Î»}}_{0}âˆˆ\left[0,\mathrm{Î›}\right]$, ${x}_{0}âˆˆX$, ${c}^{âˆ—}âˆˆ{X}^{âˆ—}$, and ${j}^{âˆ—}âˆˆ{X}^{âˆ—}$. Note that ${\mathrm{Î»}}_{0}âˆˆ\left(0,\mathrm{Î›}\right]$. Indeed, if ${\mathrm{Î»}}_{0}=0$, then (2.14) implies ${u}_{n}^{âˆ—}â†’0$ which gives by condition (${S}_{q}$) on $D\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}$, ${x}_{n}â†’{x}_{0}âˆˆ\mathrm{âˆ‚}\mathrm{Î©}$ and therefore ${x}_{0}âˆˆD\left(T\right)$ and $0âˆˆT{x}_{0}$, which contradicts the hypothesis that $0âˆ‰T\left(D\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}\right)$.

To show that ${x}_{n}â†’{x}_{0}$, we first claim that

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left({\mathrm{Î»}}_{n},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰â‰¤0.$
(2.15)

Assume the contrary. So, we may suppose that

$\underset{nâ†’\mathrm{âˆž}}{lim}ã€ˆC\left({\mathrm{Î»}}_{n},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰>0.$

Hence, it follows from (2.14) that ${u}_{n}^{âˆ—}â‡€âˆ’{c}^{âˆ—}$ and

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆ{u}_{n}^{âˆ—},{x}_{n}âˆ’{x}_{0}ã€‰<0,$

which imply

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆ{u}_{n}^{âˆ—},{x}_{n}ã€‰<ã€ˆâˆ’{c}^{âˆ—},{x}_{0}ã€‰.$
(2.16)

For every $xâˆˆD\left(T\right)$ and every ${u}^{âˆ—}âˆˆTx$, we obtain from the monotonicity of T that

$\begin{array}{rcl}\underset{nâ†’\mathrm{âˆž}}{limâ€‰inf}ã€ˆ{u}_{n}^{âˆ—},{x}_{n}ã€‰& â‰¥& \underset{nâ†’\mathrm{âˆž}}{limâ€‰inf}\left[ã€ˆ{u}_{n}^{âˆ—},xã€‰+ã€ˆ{u}^{âˆ—},{x}_{n}âˆ’xã€‰\right]\\ â‰¥& ã€ˆâˆ’{c}^{âˆ—},xã€‰+ã€ˆ{u}^{âˆ—},{x}_{0}âˆ’xã€‰,\end{array}$

which implies along with (2.16)

$ã€ˆâˆ’{c}^{âˆ—}âˆ’{u}^{âˆ—},{x}_{0}âˆ’xã€‰>0.$
(2.17)

Since T is maximal monotone, we have ${x}_{0}âˆˆD\left(T\right)$ and $âˆ’{c}^{âˆ—}âˆˆT{x}_{0}$. Letting $x={x}_{0}$ in (2.17), we have a contradiction. Thus, (2.15) is true.

As above, we can deduce from (2.15) that

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left({\mathrm{Î»}}_{0},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰â‰¤0.$

Since C satisfies condition (${S}_{+}$) and is demicontinuous, we obtain from (2.14) that

${x}_{n}â†’{x}_{0}\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}{u}_{n}^{âˆ—}â‡€âˆ’C\left({\mathrm{Î»}}_{0},{x}_{0}\right).$

We conclude that ${x}_{0}âˆˆD\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}$ and

$0âˆˆT{x}_{0}+C\left({\mathrm{Î»}}_{0},{x}_{0}\right).$

This completes the proof.â€ƒâ–¡

As a consequence of Theorem 2.1, we have the following result. When C is a compact operator, it was proved by Li and Huang [12] with the aid of the Leray-Schauder degree for compact operators.

Corollary 2.2 Let T, Î©, Î›, ${s}_{0}$, and ${\mathrm{Îµ}}_{0}$ be as in Theorem  2.1. Suppose that $C:\stackrel{Â¯}{\mathrm{Î©}}â†’{X}^{âˆ—}$ is a demicontinuous bounded operator which satisfies condition (${S}_{+}$).

1. (a)

For a given $\mathrm{Îµ}>0$, assume the following property:

($\mathcal{P}$) For every $sâˆˆ\left(0,{s}_{0}\right)$, there exists a $\mathrm{Î»}âˆˆ\left(0,\mathrm{Î›}\right]$ such that the equation

${T}_{s}x+\mathrm{Î»}Cx+\mathrm{Îµ}Jx=0$

has no solution in Î©. Then there exists a $\left({\mathrm{Î»}}_{\mathrm{Îµ}},{x}_{\mathrm{Îµ}}\right)âˆˆ\left(0,\mathrm{Î›}\right]Ã—\left(D\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}\right)$ such that

$0âˆˆT{x}_{\mathrm{Îµ}}+{\mathrm{Î»}}_{\mathrm{Îµ}}C{x}_{\mathrm{Îµ}}+\mathrm{Îµ}J{x}_{\mathrm{Îµ}}.$
1. (b)

If $0âˆ‰T\left(D\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}\right)$, T satisfies condition (${S}_{q}$) on $D\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}$, and property ($\mathcal{P}$) is fulfilled for all $\mathrm{Îµ}âˆˆ\left(0,{\mathrm{Îµ}}_{0}\right]$, then there exists a $\left({\mathrm{Î»}}_{0},{x}_{0}\right)âˆˆ\left(0,\mathrm{Î›}\right]Ã—\left(D\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}\right)$ such that

$0âˆˆT{x}_{0}+{\mathrm{Î»}}_{0}C{x}_{0}.$

Proof Define an operator $\stackrel{Ëœ}{C}:\left[0,\mathrm{Î›}\right]Ã—\stackrel{Â¯}{\mathrm{Î©}}â†’{X}^{âˆ—}$ by

By hypotheses on C, the operator $\stackrel{Ëœ}{C}$ is obviously demicontinuous, bounded, and satisfies condition (${S}_{+}$). Moreover, $\stackrel{Ëœ}{C}\left(t,x\right)$ is continuous in t uniformly with respect to $xâˆˆ\stackrel{Â¯}{\mathrm{Î©}}$ because $C\left(\stackrel{Â¯}{\mathrm{Î©}}\right)$ is bounded. Apply Theorem 2.1 with $C=\stackrel{Ëœ}{C}$.â€ƒâ–¡

## 3 Implicit eigenvalue problem about densely defined operators

In this section, we study the implicit eigenvalue problem for densely defined perturbations of maximal monotone operators, based on the degree theories of Kartsatos and Skrypnik.

An operator $C:\left[0,\mathrm{Î›}\right]Ã—D\left(C\right)â†’{X}^{âˆ—}$ is said to be uniformly quasibounded if for every $S>0$ there exists a constant $K\left(S\right)>0$ such that for all $\mathrm{Î»}âˆˆ\left[0,\mathrm{Î›}\right]$ and all $uâˆˆD\left(C\right)$ with $âˆ¥uâˆ¥â‰¤S$ and $ã€ˆC\left(\mathrm{Î»},u\right),uã€‰â‰¤0$, we have $âˆ¥C\left(\mathrm{Î»},u\right)âˆ¥â‰¤K\left(S\right)$.

In a regularization method by the duality operator, we establish a new result on the existence of eigenvalues, by applying topological degree for densely defined operators in [8, 9].

Theorem 3.1 Let Î© be a bounded open set in X with $0âˆˆ\mathrm{Î©}$ and L a dense subspace of X. Let $T:D\left(T\right)âŠ‚Xâ†’{2}^{{X}^{âˆ—}}$ be a maximal monotone multi-valued operator with $0âˆˆD\left(T\right)$ and $0âˆˆT\left(0\right)$. Let Î›, ${s}_{0}$, and ${\mathrm{Îµ}}_{0}$ be positive numbers. Assume that $C:\left[0,\mathrm{Î›}\right]Ã—D\left(C\right)â†’{X}^{âˆ—}$ is a single-valued operator with $LâŠ‚D\left(C\right)âŠ‚X$ such that $C\left(0,x\right)=0$ for all $xâˆˆD\left(C\right)$ and $C\left(t,x\right)$ is continuous in t uniformly with respect to $xâˆˆD\left(C\right)$. Assume further that

(c1) C is uniformly quasibounded,

(c2) C satisfies condition (${\stackrel{Ëœ}{S}}_{+}$), and

(c3) for every $\mathrm{Î»}âˆˆ\left[0,\mathrm{Î›}\right]$ and for every $Fâˆˆ\mathcal{F}\left(L\right)$ and $vâˆˆL$, the function , $c\left(\mathrm{Î»},F,v\right)\left(u\right)=ã€ˆC\left(\mathrm{Î»},u\right),vã€‰$, is continuous on F, where $\mathcal{F}\left(L\right)$ denotes the set of all finite-dimensional subspaces of L.

Then the following statements hold:

1. (a)

For a given $\mathrm{Îµ}>0$, assume the following property:

($\mathcal{P}$) For every $sâˆˆ\left(0,{s}_{0}\right)$, there exists a $\mathrm{Î»}âˆˆ\left(0,\mathrm{Î›}\right]$ such that the equation

${T}_{s}x+C\left(\mathrm{Î»},x\right)+\mathrm{Îµ}{J}_{\mathrm{Ïˆ}}x=0$

has no solution in $D\left(C\right)âˆ©\mathrm{Î©}$. Then there is a $\left({\mathrm{Î»}}_{\mathrm{Îµ}},{x}_{\mathrm{Îµ}}\right)âˆˆ\left(0,\mathrm{Î›}\right]Ã—\left(D\left(T\right)âˆ©D\left(C\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}\right)$ such that

$0âˆˆT{x}_{\mathrm{Îµ}}+C\left({\mathrm{Î»}}_{\mathrm{Îµ}},{x}_{\mathrm{Îµ}}\right)+\mathrm{Îµ}{J}_{\mathrm{Ïˆ}}{x}_{\mathrm{Îµ}}.$
1. (b)

If $0âˆ‰T\left(D\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}\right)$, T satisfies condition (${S}_{q}$) on $D\left(T\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}$, and property ($\mathcal{P}$) is fulfilled for all $\mathrm{Îµ}âˆˆ\left(0,{\mathrm{Îµ}}_{0}\right]$, then there exists a $\left({\mathrm{Î»}}_{0},{x}_{0}\right)âˆˆ\left(0,\mathrm{Î›}\right]Ã—\left(D\left(T\right)âˆ©D\left(C\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}\right)$ such that

$0âˆˆT{x}_{0}+C\left({\mathrm{Î»}}_{0},{x}_{0}\right).$

Proof (a) First, we prove that for every $sâˆˆ\left(0,{s}_{0}\right)$, there exists a $\left({\mathrm{Î»}}_{0},{x}_{0}\right)âˆˆ\left(0,\mathrm{Î›}\right]Ã—\left(D\left(C\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}\right)$ such that

${T}_{s}{x}_{0}+C\left({\mathrm{Î»}}_{0},{x}_{0}\right)+\mathrm{Îµ}{J}_{\mathrm{Ïˆ}}{x}_{0}=0.$
(3.1)

Assume on the contrary that for some $sâˆˆ\left(0,{s}_{0}\right)$ and for every $\mathrm{Î»}âˆˆ\left(0,\mathrm{Î›}\right]$, the following holds:

(3.2)

Then (3.2) holds for all $\mathrm{Î»}âˆˆ\left[0,\mathrm{Î›}\right]$. For $\mathrm{Î»}=0$, the assertion is obvious.

For $tâˆˆ\left[0,1\right]$, we set ${T}^{t}={T}_{s}$ and ${C}^{t}=C\left(t\mathrm{Î›},â‹\dots \right)+\mathrm{Îµ}{J}_{\mathrm{Ïˆ}}$. To show that $\left\{{T}^{t}+{C}^{t}\right\}$ is an admissible homotopy in the sense of Definition 2.4 in [9], we have to check the following conditions on two families $\left\{{T}^{t}\right\}$ and $\left\{{C}^{t}\right\}$. In fact, conditions on $\left\{{T}^{t}\right\}$ are automatically satisfied, with ${T}^{t}$ independent of t, due to the monotonicity of ${T}_{s}$ and ${T}_{s}\left(0\right)=0$.

(${c}_{1}^{t}$) $\left\{{C}^{t}\right\}$ is uniformly strongly quasibounded with respect to ${T}^{t}$, i.e., for every $\mathrm{â„“}>0$ there exists a constant $K\left(\mathrm{â„“}\right)>0$ such that for all $uâˆˆL$ with $âˆ¥uâˆ¥â‰¤\mathrm{â„“}$ and all $tâˆˆ\left[0,1\right]$,

$ã€ˆ{T}^{t}u+{C}^{t}u,uã€‰â‰¤0\phantom{\rule{1em}{0ex}}\text{implies}\phantom{\rule{1em}{0ex}}âˆ¥{C}^{t}uâˆ¥â‰¤K\left(\mathrm{â„“}\right).$

This follows trivially from (c1) and the fact that ${T}_{s}$ and ${J}_{\mathrm{Ïˆ}}$ are monotone and ${J}_{\mathrm{Ïˆ}}$ is bounded.

(${c}_{2}^{t}$) For every pair of sequences $\left\{{t}_{j}\right\}$ in $\left[0,1\right]$ and $\left\{{u}_{j}\right\}$ in L such that ${t}_{j}â†’{t}_{0}$, ${u}_{j}â‡€{u}_{0}$, ${C}^{{t}_{j}}{u}_{j}â‡€{h}_{0}^{âˆ—}$ and

$\underset{jâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆ{C}^{{t}_{j}}{u}_{j},{u}_{j}âˆ’{u}_{0}ã€‰â‰¤0,\phantom{\rule{2em}{0ex}}ã€ˆ{T}^{{t}_{j}}{u}_{j}+{C}^{{t}_{j}}{u}_{j},{u}_{j}ã€‰â‰¤0,$
(3.3)

where ${t}_{0}âˆˆ\left[0,1\right]$, ${u}_{0}âˆˆX$, and ${h}_{0}^{âˆ—}âˆˆ{X}^{âˆ—}$, we have ${u}_{j}â†’{u}_{0}$, ${u}_{0}âˆˆD\left(C\right)$ and ${C}^{{t}_{0}}{u}_{0}={h}_{0}^{âˆ—}$.

For this, there are two cases to consider. If ${t}_{0}=0$, then the second inequality in (3.3) implies

$\mathrm{Îµ}\mathrm{Ïˆ}\left(âˆ¥{u}_{j}âˆ¥\right)âˆ¥{u}_{j}âˆ¥=\mathrm{Îµ}ã€ˆ{J}_{\mathrm{Ïˆ}}{u}_{j},{u}_{j}ã€‰â‰¤ã€ˆ{T}_{s}{u}_{j},{u}_{j}ã€‰+\mathrm{Îµ}ã€ˆ{J}_{\mathrm{Ïˆ}}{u}_{j},{u}_{j}ã€‰â‰¤âˆ’ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right),{u}_{j}ã€‰â†’0$

and hence ${u}_{j}â†’0$, ${u}_{0}=0âˆˆD\left(C\right)$, and ${C}^{0}{u}_{0}=0={h}_{0}^{âˆ—}$. Now let ${t}_{0}>0$. From the first inequality in (3.3) it follows that

$ã€ˆ{C}^{{t}_{j}}{u}_{j},{u}_{j}âˆ’{u}_{0}ã€‰â‰¥ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰+\mathrm{Îµ}ã€ˆ{J}_{\mathrm{Ïˆ}}{u}_{0},{u}_{j}âˆ’{u}_{0}ã€‰$

and so

$\underset{jâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰â‰¤0.$

Combining this with

$ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰=ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right)âˆ’C\left({t}_{0}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰+ã€ˆC\left({t}_{0}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰,$

we have

$\begin{array}{rcl}\underset{jâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left({t}_{0}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰& â‰¤& \underset{jâ†’\mathrm{âˆž}}{limâ€‰sup}\left[âˆ’ã€ˆC\left({t}_{j}\mathrm{Î›},{u}_{j}\right)âˆ’C\left({t}_{0}\mathrm{Î›},{u}_{j}\right),{u}_{j}âˆ’{u}_{0}ã€‰\right]\\ â‰¤& \underset{jâ†’\mathrm{âˆž}}{lim}âˆ¥C\left({t}_{j}\mathrm{Î›},{u}_{j}\right)âˆ’C\left({t}_{0}\mathrm{Î›},{u}_{j}\right)âˆ¥âˆ¥{u}_{j}âˆ’{u}_{0}âˆ¥=0.\end{array}$

In view of ${C}^{{t}_{j}}{u}_{j}â‡€{h}_{0}^{âˆ—}$, we can find a subsequence of $\left\{{u}_{j}\right\}$, denoted again by $\left\{{u}_{j}\right\}$, such that $C\left({t}_{j}\mathrm{Î›},{u}_{j}\right)â‡€{h}_{1}^{âˆ—}$ and ${J}_{\mathrm{Ïˆ}}{u}_{j}â‡€{h}_{2}^{âˆ—}$ for some ${h}_{1}^{âˆ—},{h}_{2}^{âˆ—}âˆˆ{X}^{âˆ—}$. Note that $C\left({t}_{0}\mathrm{Î›},{u}_{j}\right)â‡€{h}_{1}^{âˆ—}$ and ${h}_{0}^{âˆ—}={h}_{1}^{âˆ—}+\mathrm{Îµ}{h}_{2}^{âˆ—}$. Hence (c2) implies that ${u}_{j}â†’{u}_{0}$, ${u}_{0}âˆˆD\left(C\right)$, and $C\left({t}_{0}\mathrm{Î›},{u}_{0}\right)={h}_{1}^{âˆ—}$ and so ${C}^{{t}_{0}}{u}_{0}=C\left({t}_{0}\mathrm{Î›},{u}_{0}\right)+\mathrm{Îµ}{J}_{\mathrm{Ïˆ}}{u}_{0}={h}_{0}^{âˆ—}$. Thus, condition (${c}_{2}^{t}$) is satisfied in both cases.

(${c}_{3}^{t}$) For every $Fâˆˆ\mathcal{F}\left(L\right)$ and $vâˆˆL$, the function , $\stackrel{Ëœ}{c}\left(F,v\right)\left(t,u\right)=ã€ˆ{C}^{t}u,vã€‰$, is continuous.

Actually, $\stackrel{Ëœ}{c}\left(F,v\right)$ is continuous on $\left[0,1\right]Ã—F$ because $c\left(t\mathrm{Î›},F,v\right)$ in the notation of (c3) is continuous on F and ${J}_{\mathrm{Ïˆ}}$ is continuous on X. Consequently, we have shown that $\left\{{T}^{t}+{C}^{t}\right\}$, $tâˆˆ\left[0,1\right]$, is an admissible homotopy.

Following Kartsatos and Skrypnik [8, 9], we can use the homotopy invariance property of the degree d with respect to the bounded open set Î© as follows:

$\begin{array}{rcl}d\left({T}_{s}+C\left(\mathrm{Î»},â‹\dots \right)+\mathrm{Îµ}{J}_{\mathrm{Ïˆ}},\mathrm{Î©},0\right)& =& d\left({T}_{s}+\mathrm{Îµ}{J}_{\mathrm{Ïˆ}},\mathrm{Î©},0\right)\\ =& 1\end{array}$

for all $\mathrm{Î»}âˆˆ\left[0,\mathrm{Î›}\right]$. The latter follows from Theorem 3 in [3], noticing that ${T}_{s}+\mathrm{Îµ}{J}_{\mathrm{Ïˆ}}$ is demicontinuous, bounded, strictly monotone and satisfies condition (${S}_{+}$). For every $\mathrm{Î»}âˆˆ\left(0,\mathrm{Î›}\right]$, the existence property of the degree implies that

which contradicts property ($\mathcal{P}$). Therefore, the first assertion (3.1) is true.

According to assertion (3.1), let $\left\{{s}_{n}\right\}$ be a sequence in $\left(0,{s}_{0}\right)$ with ${s}_{n}â†’0$ and $\left\{\left({\mathrm{Î»}}_{n},{x}_{n}\right)\right\}$ be a sequence in $\left(0,\mathrm{Î›}\right]Ã—\left(D\left(C\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}\right)$ such that

${T}_{{s}_{n}}{x}_{n}+C\left({\mathrm{Î»}}_{n},{x}_{n}\right)+\mathrm{Îµ}{J}_{\mathrm{Ïˆ}}{x}_{n}=0.$
(3.4)

Without loss of generality, we may suppose that

${\mathrm{Î»}}_{n}â†’{\mathrm{Î»}}_{0},\phantom{\rule{2em}{0ex}}{x}_{n}â‡€{x}_{0},\phantom{\rule{2em}{0ex}}C\left({\mathrm{Î»}}_{n},{x}_{n}\right)â‡€{c}^{âˆ—}\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}{J}_{\mathrm{Ïˆ}}{x}_{n}â‡€{j}^{âˆ—},$

where ${\mathrm{Î»}}_{0}âˆˆ\left[0,\mathrm{Î›}\right]$, ${x}_{0}âˆˆX$, ${c}^{âˆ—}âˆˆ{X}^{âˆ—}$ and ${j}^{âˆ—}âˆˆ{X}^{âˆ—}$. We may consider the case that ${\mathrm{Î»}}_{0}âˆˆ\left(0,\mathrm{Î›}\right]$ as the conclusion of (a) does not hold for ${\mathrm{Î»}}_{0}=0$. In order to apply the condition (${\stackrel{Ëœ}{S}}_{+}$), we first show that

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left({\mathrm{Î»}}_{n},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰â‰¤0.$
(3.5)

Assume on the contrary that there exists a subsequence of $\left\{{x}_{n}\right\}$, denoted again by $\left\{{x}_{n}\right\}$, such that

$\underset{nâ†’\mathrm{âˆž}}{lim}ã€ˆC\left({\mathrm{Î»}}_{n},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰>0.$

Note by (3.4) and the monotonicity of ${J}_{\mathrm{Ïˆ}}$ that

$ã€ˆ{T}_{{s}_{n}}{x}_{n},{x}_{n}âˆ’{x}_{0}ã€‰â‰¤âˆ’ã€ˆC\left({\mathrm{Î»}}_{n},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰âˆ’\mathrm{Îµ}ã€ˆ{J}_{\mathrm{Ïˆ}}{x}_{0},{x}_{n}âˆ’{x}_{0}ã€‰$

and so

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆ{T}_{{s}_{n}}{x}_{n},{x}_{n}âˆ’{x}_{0}ã€‰<0.$

Hence, it follows from ${T}_{{s}_{n}}{x}_{n}â‡€âˆ’{c}^{âˆ—}âˆ’\mathrm{Îµ}{j}^{âˆ—}$ that

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆ{T}_{{s}_{n}}{x}_{n},{x}_{n}ã€‰<ã€ˆâˆ’{c}^{âˆ—}âˆ’\mathrm{Îµ}{j}^{âˆ—},{x}_{0}ã€‰.$
(3.6)

For every $xâˆˆD\left(T\right)$ and every ${u}^{âˆ—}âˆˆTx$, it is shown as in the proof of part (a) of Theorem 2.1 that

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰inf}ã€ˆ{T}_{{s}_{n}}{x}_{n},{x}_{n}ã€‰â‰¥ã€ˆâˆ’{c}^{âˆ—}âˆ’\mathrm{Îµ}{j}^{âˆ—},xã€‰+ã€ˆ{u}^{âˆ—},{x}_{0}âˆ’xã€‰,$

which implies in view of (3.6)

$ã€ˆâˆ’{c}^{âˆ—}âˆ’\mathrm{Îµ}{j}^{âˆ—}âˆ’{u}^{âˆ—},{x}_{0}âˆ’xã€‰>0.$
(3.7)

Since T is maximal monotone, we have ${x}_{0}âˆˆD\left(T\right)$ and $âˆ’{c}^{âˆ—}âˆ’\mathrm{Îµ}{j}^{âˆ—}âˆˆT{x}_{0}$. Letting $x={x}_{0}$ in (3.7), we have a contradiction. Thus, (3.5) holds.

As before, we can deduce from (3.5) that

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left({\mathrm{Î»}}_{0},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰â‰¤0.$

Since C satisfies condition (${\stackrel{Ëœ}{S}}_{+}$), we have

${x}_{n}â†’{x}_{0},\phantom{\rule{1em}{0ex}}{x}_{0}âˆˆD\left(C\right),\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}C\left({\mathrm{Î»}}_{0},{x}_{0}\right)={c}^{âˆ—}.$
(3.8)

Combining (3.4) and (3.8), we obtain

${T}_{{s}_{n}}{x}_{n}â‡€âˆ’C\left({\mathrm{Î»}}_{0},{x}_{0}\right)âˆ’\mathrm{Îµ}{J}_{\mathrm{Ïˆ}}{x}_{0}$

and

${J}_{{s}_{n}}{x}_{n}â†’{x}_{0}.$

Since T is maximal monotone and ${T}_{{s}_{n}}{x}_{n}âˆˆT{J}_{{s}_{n}}{x}_{n}$, Lemma 1.1 implies that ${x}_{0}âˆˆD\left(T\right)âˆ©D\left(C\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}$ and

$0âˆˆT{x}_{0}+C\left({\mathrm{Î»}}_{0},{x}_{0}\right)+\mathrm{Îµ}{J}_{\mathrm{Ïˆ}}{x}_{0}.$
1. (b)

In view of (a), for a sequence $\left\{{\mathrm{Îµ}}_{n}\right\}$ in $\left(0,{\mathrm{Îµ}}_{0}\right]$ with ${\mathrm{Îµ}}_{n}â†’0$, we take sequences $\left\{{\mathrm{Î»}}_{n}\right\}$ in $\left(0,\mathrm{Î›}\right]$, $\left\{{x}_{n}\right\}$ in $D\left(T\right)âˆ©D\left(C\right)âˆ©\mathrm{âˆ‚}\mathrm{Î©}$ and $\left\{{u}_{n}^{âˆ—}\right\}$ in ${X}^{âˆ—}$ with ${u}_{n}^{âˆ—}âˆˆT{x}_{n}$ such that

${u}_{n}^{âˆ—}+C\left({\mathrm{Î»}}_{n},{x}_{n}\right)+{\mathrm{Îµ}}_{n}{J}_{\mathrm{Ïˆ}}{x}_{n}=0.$
(3.9)

We may suppose that

${\mathrm{Î»}}_{n}â†’{\mathrm{Î»}}_{0},\phantom{\rule{2em}{0ex}}{x}_{n}â‡€{x}_{0},\phantom{\rule{2em}{0ex}}C\left({\mathrm{Î»}}_{n},{x}_{n}\right)â‡€{c}^{âˆ—}\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}{J}_{\mathrm{Ïˆ}}{x}_{n}â‡€{j}^{âˆ—},$

where ${\mathrm{Î»}}_{0}âˆˆ\left[0,\mathrm{Î›}\right]$, ${x}_{0}âˆˆX$, ${c}^{âˆ—}âˆˆ{X}^{âˆ—}$ and ${j}^{âˆ—}âˆˆ{X}^{âˆ—}$. Note that ${\mathrm{Î»}}_{0}âˆˆ\left(0,\mathrm{Î›}\right]$. As in the proof of part (b) of Theorem 2.1, a similar argument shows that

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left({\mathrm{Î»}}_{n},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰â‰¤0$
(3.10)

and so in a usual way

$\underset{nâ†’\mathrm{âˆž}}{limâ€‰sup}ã€ˆC\left({\mathrm{Î»}}_{0},{x}_{n}\right),{x}_{n}âˆ’{x}_{0}ã€‰â‰¤0.$

Hence, it follows from (c2) that

${x}_{n}â†’{x}_{0}âˆˆ\mathrm{âˆ‚}\mathrm{Î©},\phantom{\rule{1em}{0ex}}{x}_{0}âˆˆD\left(C\right),\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}C\left({\mathrm{Î»}}_{0},{x}_{0}\right)={c}^{âˆ—}$

which implies by (3.9)

${u}_{n}^{âˆ—}â‡€âˆ’C\left({\mathrm{Î»}}_{0},{x}_{0}\right).$

Consequently, we obtain from the maximal monotonicity of T that ${x}_{0}âˆˆD\left(T\right)$ and

$0âˆˆT{x}_{0}+C\left({\mathrm{Î»}}_{0},{x}_{0}\right).$

This completes the proof.â€ƒâ–¡

Remark 3.2 In an analogous way to Theorem 3.1, we can observe the eigenvalue problem $0âˆˆTx+\mathrm{Î»}Cx$ for quasibounded perturbations of maximal monotone operators; see [10].

## References

1. Brezis H, Crandall MG, Pazy A: Perturbations of nonlinear maximal monotone sets in Banach space. Commun. Pure Appl. Math. 1970, 23: 123â€“144. 10.1002/cpa.3160230107

2. Browder FE: Fixed point theory and nonlinear problems. Bull. Am. Math. Soc. 1983, 9: 1â€“39. 10.1090/S0273-0979-1983-15153-4

3. Browder FE: Degree of mapping for nonlinear mappings of monotone type. Proc. Natl. Acad. Sci. USA 1983, 80: 1771â€“1773. 10.1073/pnas.80.6.1771

4. Browder FE: The degree of mapping and its generalizations. Contemp. Math. 1983, 21: 15â€“40.

5. Guan Z, Kartsatos AG: On the eigenvalue problem for perturbations of nonlinear accretive and monotone operators in Banach spaces. Nonlinear Anal. 1996, 27: 125â€“141. 10.1016/0362-546X(95)00016-O

6. Kartsatos AG: New results in the perturbation theory of maximal monotone and m -accretive operators in Banach spaces. Trans. Am. Math. Soc. 1996, 348: 1663â€“1707. 10.1090/S0002-9947-96-01654-6

7. Kartsatos AG, Skrypnik IV: Normalized eigenvectors for nonlinear abstract and elliptic operators. J. Differ. Equ. 1999, 155: 443â€“475. 10.1006/jdeq.1998.3592

8. Kartsatos AG, Skrypnik IV:Topological degree theories for densely defined mappings involving operators of type (${S}_{+}$). Adv. Differ. Equ. 1999, 4: 413â€“456.

9. Kartsatos AG, Skrypnik IV:A new topological degree theory for densely defined quasibounded (${\stackrel{Ëœ}{S}}_{+}$)-perturbations of multivalued maximal monotone operators in reflexive Banach spaces. Abstr. Appl. Anal. 2005, 2005: 121â€“158. 10.1155/AAA.2005.121

10. Kartsatos AG, Skrypnik IV: On the eigenvalue problem for perturbed nonlinear maximal monotone operators in reflexive Banach spaces. Trans. Am. Math. Soc. 2006, 358: 3851â€“3881. 10.1090/S0002-9947-05-03761-X

11. Kim I-S: Some eigenvalue results for maximal monotone operators. Nonlinear Anal. 2011, 74: 6041â€“6049. 10.1016/j.na.2011.05.081

12. Li H-X, Huang F-L: On the nonlinear eigenvalue problem for perturbations of monotone and accretive operators in Banach spaces. Sichuan Daxue Xuebao 2000, 37: 303â€“309.

13. Petryshyn WV: Approximation-Solvability of Nonlinear Functional and Differential Equations. Marcel Dekker, New York; 1993.

14. Skrypnik IV: Nonlinear Higher Order Elliptic Equations. Naukova Dumka, Kiev; 1973. Russian

15. Skrypnik IV Transl., Ser. II. 139. In Methods for Analysis of Nonlinear Elliptic Boundary Value Problems. Am. Math. Soc., Providence; 1994.

16. VÃ¤th M: Fixed point theorems and fixed point index for countably condensing maps. Topol. Methods Nonlinear Anal. 1999, 13: 341â€“363.

17. Zeidler E: Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators. Springer, New York; 1990.

## Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2011-0021-829).

## Author information

Authors

### Corresponding author

Correspondence to In-Sook Kim.

### Competing interests

The author declares that she has no competing interests.

## Rights and permissions

Reprints and permissions

Kim, IS. Implicit eigenvalue problems for maximal monotone operators. Fixed Point Theory Appl 2012, 178 (2012). https://doi.org/10.1186/1687-1812-2012-178