Skip to main content

Some fixed point theorems in complex valued metric spaces

Abstract

Owning the concept of complex valued metric spaces introduced by Azam et al., we prove several fixed point theorems for mappings satisfying certain point-dependent contractive conditions. The main results announced by Sintunavarat and Kumam (J. Inequal. Appl. 2012:84, 2012), Rouzkard and Imdad (Comput. Math. Appl., 2012, doi:10.1016/j.camwa.2012.02.063), and Dass and Gupta (Indian J. Pure Appl. Math. 6(12):1455-1458, 1975) are deduced from our results under weaker assumptions.

1 Introduction

The concept of a complex valued metric space which is a generalization of the classical metric space was recently introduced by Azam, Fisher and Khan (see [1]). To mention this, let us recall a natural relation â‰¾ on â„‚, the set of complex numbers as follows: for ${z}_{1},{z}_{2}âˆˆ\mathbb{C}$

$\begin{array}{c}{z}_{1}â‰¾{z}_{2}\phantom{\rule{1em}{0ex}}\stackrel{\mathrm{def}}{âŸº}\phantom{\rule{1em}{0ex}}Re\left({z}_{1}\right)â‰¤Re\left({z}_{2}\right)\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}Im\left({z}_{1}\right)â‰¤Im\left({z}_{2}\right),\hfill \\ {z}_{1}â‰º{z}_{2}\phantom{\rule{1em}{0ex}}\stackrel{\mathrm{def}}{âŸº}\phantom{\rule{1em}{0ex}}Re\left({z}_{1}\right)

Definition 1.1 Let X be a nonempty set. A mapping $d:XÃ—Xâ†’\mathbb{C}$ is called a complex valued metric on X if the following conditions are satisfied:

(CM1) $0â‰¾d\left(x,y\right)$ for all $x,yâˆˆX$ and $d\left(x,y\right)=0âŸºx=y$;

(CM2) $d\left(x,y\right)=d\left(y,x\right)$ for all $x,yâˆˆX$;

(CM3) $d\left(x,y\right)â‰¾d\left(x,z\right)+d\left(z,y\right)$ for all $x,y,zâˆˆX$.

In this case, we say that $\left(X,d\right)$ is a complex valued metric space.

It is obvious that this concept is a generalization of the classical metric. In fact, if $d:XÃ—Xâ†’\mathbb{R}$ satisfies (CM1)-(CM3), then this d is a metric in the classical sense; that is, the following conditions are satisfied:

(M1) $0â‰¤d\left(x,y\right)$ for all $x,yâˆˆX$ and $d\left(x,y\right)=0âŸºx=y$;

(M2) $d\left(x,y\right)=d\left(y,x\right)$ for all $x,yâˆˆX$;

(M3) $d\left(x,y\right)â‰¤d\left(x,z\right)+d\left(z,y\right)$ for all $x,y,zâˆˆX$.

The following definition is an analogue of several concepts in the classical theory of metric spaces and they are discussed in [1]. There are also other interesting types of generalization of metric spaces; for example, see [2, 3].

Definition 1.2 Suppose that $\left(X,d\right)$ is a complex valued metric space.

• We say that a sequence $\left\{{x}_{n}\right\}$ is a Cauchy sequence if for every $0â‰ºcâˆˆ\mathbb{C}$ there exists an integer N such that $d\left({x}_{n},{x}_{m}\right)â‰ºc$ for all $n,mâ‰¥N$.

• We say that $\left\{{x}_{n}\right\}$converges to an element$xâˆˆX$ if for every $0â‰ºcâˆˆ\mathbb{C}$ there exists an integer N such that $d\left({x}_{n},x\right)â‰ºc$ for all $nâ‰¥N$. In this case, we write ${x}_{n}\stackrel{d}{â†’}x$.

• We say that $\left(X,d\right)$ is complete if every Cauchy sequence in X converges to a point in X.

The following fact is summarized from Azam, Fisher and Khanâ€™s paper [1]. In fact, (b) and (c) of Proposition 1.3 are their Lemmas 2 and 3.

Proposition 1.3 Let $\left(X,d\right)$ be a complex value metric space. Suppose that $d={d}_{1}+i{d}_{2}$ where ${d}_{1},{d}_{2}:XÃ—Xâ†’\mathbb{R}$, that is, ${d}_{1}=Re\left(d\right)$ and ${d}_{2}=Im\left(d\right)$. Then the following assertions hold.

1. (a)

$|d|={\left({d}_{1}^{2}+{d}_{2}^{2}\right)}^{1/2}:XÃ—Xâ†’\mathbb{R}$ is a (classical) metric on X.

2. (b)

If $\left\{{x}_{n}\right\}$ is a sequence in X and $xâˆˆX$, then ${x}_{n}\stackrel{d}{â†’}x$ if and only if ${x}_{n}\stackrel{|d|}{â†’}x$.

3. (c)

$\left(X,d\right)$ is complete if and only if $\left(X,|d|\right)$ is complete.

The following common fixed point theorem was also proved by Azam, Fisher and Khan. This can be viewed as a generalization of the well-known Banach fixed point theorem.

Theorem 1.4 ([1])

Let $\left(X,d\right)$ be a complete complex valued metric space, and let Î», Î¼ be nonnegative real numbers such that $\mathrm{Î»}+\mathrm{Î¼}<1$. Suppose that $S,T:Xâ†’X$ are mappings satisfying:

$d\left(Sx,Ty\right)â‰¾\mathrm{Î»}d\left(x,y\right)+\frac{\mathrm{Î¼}d\left(x,Sx\right)d\left(y,Ty\right)}{1+d\left(x,y\right)}\phantom{\rule{1em}{0ex}}\mathrm{âˆ€}x,yâˆˆX.$
(1)

Then S and T have a unique common fixed point.

In this paper, we continue the study of fixed point theorems in complex valued metric spaces. The obtained results are generalizations of recent results proved by Sintunavarat and Kumam [4], Rouzkard and Imdad [5]. Moreover, we improve several assumptions on the involved mappings. It should be noted that there are also some different fixed point theorems recently proved in [6].

2 Main result

Throughout the paper, let $\left(X,d\right)$ be a complete complex valued metric space and $S,T:Xâ†’X$.

Proposition 2.1 Let ${x}_{0}âˆˆX$ and define the sequence $\left\{{x}_{n}\right\}$ by

(2)

Assume that there exists a mapping $\mathrm{Î»}:XÃ—Xâ†’\left[0,1\right)$ satisfying

Then $\mathrm{Î»}\left({x}_{2n},y\right)â‰¤\mathrm{Î»}\left({x}_{0},y\right)$ and $\mathrm{Î»}\left(x,{x}_{2n+1}\right)â‰¤\mathrm{Î»}\left(x,{x}_{1}\right)$ for all $x,yâˆˆX$ and $n=0,1,2,â€¦$.

Proof Let $x,yâˆˆX$ and $n=0,1,2,â€¦$â€‰. Then we have

$\mathrm{Î»}\left({x}_{2n},y\right)=\mathrm{Î»}\left(TS{x}_{2nâˆ’2},y\right)â‰¤\mathrm{Î»}\left({x}_{2nâˆ’2},y\right)=\mathrm{Î»}\left(TS{x}_{2nâˆ’4},y\right)â‰¤â‹¯â‰¤\mathrm{Î»}\left({x}_{0},y\right).$

Similarly, we have

$\mathrm{Î»}\left(x,{x}_{2n+1}\right)=\mathrm{Î»}\left(x,ST{x}_{2nâˆ’1}\right)â‰¤\mathrm{Î»}\left(x,{x}_{2nâˆ’1}\right)=\mathrm{Î»}\left(x,ST{x}_{2nâˆ’3}\right)â‰¤â‹¯â‰¤\mathrm{Î»}\left(x,{x}_{1}\right).$

â€ƒâ–¡

Lemma 2.2 Let $\mathrm{Î»},\mathrm{Î¼}:XÃ—Xâ†’\left[0,1\right)$ and $x,yâˆˆX$. If S and T satisfy

$\begin{array}{c}d\left(Sx,TSx\right)â‰¾\mathrm{Î»}\left(x,Sx\right)d\left(x,Sx\right)+\mathrm{Î¼}\left(x,Sx\right)\frac{d\left(x,Sx\right)d\left(Sx,TSx\right)}{1+d\left(x,Sx\right)},\hfill \\ d\left(STy,Ty\right)â‰¾\mathrm{Î»}\left(Ty,y\right)d\left(Ty,y\right)+\mathrm{Î¼}\left(Ty,y\right)\frac{d\left(Ty,STy\right)d\left(y,Ty\right)}{1+d\left(Ty,y\right)},\hfill \end{array}$

then

$\begin{array}{c}|d\left(Sx,TSx\right)|â‰¤\mathrm{Î»}\left(x,Sx\right)|d\left(x,Sx\right)|+\mathrm{Î¼}\left(x,Sx\right)|d\left(Sx,TSx\right)|,\hfill \\ |d\left(STy,Ty\right)|â‰¤\mathrm{Î»}\left(Ty,y\right)|d\left(Ty,y\right)|+\mathrm{Î¼}\left(Ty,y\right)|d\left(Ty,STy\right)|,\hfill \end{array}$

respectively.

Proof We can write

$\begin{array}{rcl}|d\left(Sx,TSx\right)|& â‰¤& |\mathrm{Î»}\left(x,Sx\right)d\left(x,Sx\right)+\mathrm{Î¼}\left(x,Sx\right)\frac{d\left(x,Sx\right)d\left(Sx,TSx\right)}{1+d\left(x,Sx\right)}|\\ â‰¤& \mathrm{Î»}\left(x,Sx\right)|d\left(x,Sx\right)|+\mathrm{Î¼}\left(x,Sx\right)|\frac{d\left(x,Sx\right)}{1+d\left(x,Sx\right)}||d\left(Sx,TSx\right)|\\ â‰¤& \mathrm{Î»}\left(x,Sx\right)|d\left(x,Sx\right)|+\mathrm{Î¼}\left(x,Sx\right)|d\left(Sx,TSx\right)|.\end{array}$
(3)

Similarly, we get

$\begin{array}{rcl}|d\left(STy,Ty\right)|& â‰¤& |\mathrm{Î»}\left(Ty,y\right)d\left(Ty,y\right)+\mathrm{Î¼}\left(Ty,y\right)\frac{d\left(Ty,STy\right)d\left(y,Ty\right)}{1+d\left(Ty,y\right)}|\\ â‰¤& \mathrm{Î»}\left(Ty,y\right)|d\left(y,Ty\right)|+\mathrm{Î¼}\left(Ty,y\right)|\frac{d\left(y,Ty\right)}{1+d\left(y,Ty\right)}||d\left(Ty,STy\right)|\\ â‰¤& \mathrm{Î»}\left(Ty,y\right)|d\left(y,Ty\right)|+\mathrm{Î¼}\left(Ty,y\right)|d\left(STy,Ty\right)|.\end{array}$
(4)

â€ƒâ–¡

Lemma 2.3 Let $\left\{{x}_{n}\right\}$ be a sequence in X and $hâˆˆ\left[0,1\right)$. If ${a}_{n}=|d\left({x}_{n},{x}_{n+1}\right)|$ satisfies

(5)

then $\left\{{x}_{n}\right\}$ is a Cauchy sequence.

Proof Let $hâˆˆ\left[0,1\right)$. Then

For $m,nâˆˆ\mathbb{N}$ such that $m>n$, we have

$\begin{array}{rcl}|d\left({x}_{n},{x}_{m}\right)|& â‰¤& {a}_{n}+{a}_{n+1}+â‹¯+{a}_{mâˆ’1}\\ â‰¤& {h}^{n}\left(1+h+{h}^{2}+â‹¯+{h}^{mâˆ’nâˆ’1}\right){a}_{0}\\ â‰¤& \frac{{h}^{n}}{1âˆ’h}{a}_{0}.\end{array}$

Thus, we have $|d\left({x}_{n},{x}_{m}\right)|â†’0$ as $nâ†’\mathrm{âˆž}$, and hence $\left\{{x}_{n}\right\}$ is a Cauchy sequence.â€ƒâ–¡

Theorem 2.4 Let $\left(X,d\right)$ be a complete complex valued metric space and $S,T:Xâ†’X$. If there exist mappings $\mathrm{Î»},\mathrm{Î¼},\mathrm{Î³}:XÃ—Xâ†’\left[0,1\right)$ such that for all $x,yâˆˆX$:

1. (a)

$\mathrm{Î»}\left(TSx,y\right)â‰¤\mathrm{Î»}\left(x,y\right)$ and $\mathrm{Î»}\left(x,STy\right)â‰¤\mathrm{Î»}\left(x,y\right)$,

$\mathrm{Î¼}\left(TSx,y\right)â‰¤\mathrm{Î¼}\left(x,y\right)$ and $\mathrm{Î¼}\left(x,STy\right)â‰¤\mathrm{Î¼}\left(x,y\right)$,

$\mathrm{Î³}\left(TSx,y\right)â‰¤\mathrm{Î³}\left(x,y\right)$ and $\mathrm{Î³}\left(x,STy\right)â‰¤\mathrm{Î³}\left(x,y\right)$;

1. (b)

$\mathrm{Î»}\left(x,y\right)+\mathrm{Î¼}\left(x,y\right)+\mathrm{Î³}\left(x,y\right)<1$;(c)

$d\left(Sx,Ty\right)â‰¾\mathrm{Î»}\left(x,y\right)d\left(x,y\right)+\mathrm{Î¼}\left(x,y\right)\frac{d\left(x,Sx\right)d\left(y,Ty\right)}{1+d\left(x,y\right)}+\mathrm{Î³}\left(x,y\right)\frac{d\left(y,Sx\right)d\left(x,Ty\right)}{1+d\left(x,y\right)}.$
(6)

Then S and T have a unique common fixed point.

Proof Let $x,yâˆˆX$. From (6), we consider

$\begin{array}{rcl}d\left(Sx,TSx\right)& â‰¾& \mathrm{Î»}\left(x,Sx\right)d\left(x,Sx\right)+\mathrm{Î¼}\left(x,Sx\right)\frac{d\left(x,Sx\right)d\left(Sx,TSx\right)}{1+d\left(x,Sx\right)}\\ +\mathrm{Î³}\left(x,Sx\right)\frac{d\left(Sx,Sx\right)d\left(x,TSx\right)}{1+d\left(x,Sx\right)}\\ =& \mathrm{Î»}\left(x,Sx\right)d\left(x,Sx\right)+\mathrm{Î¼}\left(x,Sx\right)\frac{d\left(x,Sx\right)d\left(Sx,TSx\right)}{1+d\left(x,Sx\right)}.\end{array}$

From Lemma 2.2, we have

$|d\left(Sx,TSx\right)|â‰¤\mathrm{Î»}\left(x,Sx\right)|d\left(x,Sx\right)|+\mathrm{Î¼}\left(x,Sx\right)|d\left(Sx,TSx\right)|.$
(7)

Similarly, we get

$\begin{array}{rcl}d\left(STy,Ty\right)& â‰¾& \mathrm{Î»}\left(Ty,y\right)d\left(Ty,y\right)+\mathrm{Î¼}\left(Ty,y\right)\frac{d\left(Ty,STy\right)d\left(y,Ty\right)}{1+d\left(Ty,y\right)}\\ +\mathrm{Î³}\left(Ty,y\right)\frac{d\left(y,STy\right)d\left(Ty,Ty\right)}{1+d\left(Ty,y\right)}\\ =& \mathrm{Î»}\left(Ty,y\right)d\left(Ty,y\right)+\mathrm{Î¼}\left(Ty,y\right)\frac{d\left(Ty,STy\right)d\left(y,Ty\right)}{1+d\left(Ty,y\right)}.\end{array}$

From Lemma 2.2, we have

$|d\left(STy,Ty\right)|â‰¤\mathrm{Î»}\left(Ty,y\right)|d\left(Ty,y\right)|+\mathrm{Î¼}\left(Ty,y\right)|d\left(Ty,STy\right)|.$
(8)

Let ${x}_{0}âˆˆX$ and the sequence $\left\{{x}_{n}\right\}$ be defined by (2). We show that $\left\{{x}_{n}\right\}$ is a Cauchy sequence. From Proposition 2.1, (7), (8) and for all $k=0,1,2,â€¦$â€‰, we have

$\begin{array}{rcl}|d\left({x}_{2k+1},{x}_{2k}\right)|& =& |d\left(ST{x}_{2kâˆ’1},T{x}_{2kâˆ’1}\right)|\\ â‰¤& \mathrm{Î»}\left(T{x}_{2kâˆ’1},{x}_{2kâˆ’1}\right)|d\left(T{x}_{2kâˆ’1},{x}_{2kâˆ’1}\right)|\\ +\mathrm{Î¼}\left(T{x}_{2kâˆ’1},{x}_{2kâˆ’1}\right)|d\left(T{x}_{2kâˆ’1},ST{x}_{2kâˆ’1}\right)|\\ =& \mathrm{Î»}\left({x}_{2k},{x}_{2kâˆ’1}\right)|d\left({x}_{2kâˆ’1},{x}_{2k}\right)|+\mathrm{Î¼}\left({x}_{2k},{x}_{2kâˆ’1}\right)|d\left({x}_{2k},{x}_{2k+1}\right)|\\ â‰¤& \mathrm{Î»}\left({x}_{0},{x}_{2kâˆ’1}\right)|d\left({x}_{2kâˆ’1},{x}_{2k}\right)|+\mathrm{Î¼}\left({x}_{0},{x}_{2kâˆ’1}\right)|d\left({x}_{2k+1},{x}_{2k}\right)|\\ â‰¤& \mathrm{Î»}\left({x}_{0},{x}_{1}\right)|d\left({x}_{2kâˆ’1},{x}_{2k}\right)|+\mathrm{Î¼}\left({x}_{0},{x}_{1}\right)|d\left({x}_{2k+1},{x}_{2k}\right)|,\end{array}$

which implies that

$|d\left({x}_{2k+1},{x}_{2k}\right)|â‰¤\frac{\mathrm{Î»}\left({x}_{0},{x}_{1}\right)}{1âˆ’\mathrm{Î¼}\left({x}_{0},{x}_{1}\right)}|d\left({x}_{2kâˆ’1},{x}_{2k}\right)|.$
(9)

Similarly, we get

$\begin{array}{rcl}|d\left({x}_{2k+2},{x}_{2k+1}\right)|& =& |d\left(TS{x}_{2k},S{x}_{2k}\right)|\\ â‰¤& \mathrm{Î»}\left({x}_{2k},S{x}_{2k}\right)|d\left({x}_{2k},S{x}_{2k}\right)|+\mathrm{Î¼}\left({x}_{2k},S{x}_{2k}\right)|d\left(S{x}_{2k},TS{x}_{2k}\right)|\\ =& \mathrm{Î»}\left({x}_{2k},{x}_{2k+1}\right)|d\left({x}_{2k},{x}_{2k+1}\right)|+\mathrm{Î¼}\left({x}_{2k},{x}_{2k+1}\right)|d\left({x}_{2k+1},{x}_{2k+2}\right)|\\ â‰¤& \mathrm{Î»}\left({x}_{0},{x}_{2k+1}\right)|d\left({x}_{2k},{x}_{2k+1}\right)|+\mathrm{Î¼}\left({x}_{0},{x}_{2k+1}\right)|d\left({x}_{2k+2},{x}_{2k+1}\right)|\\ â‰¤& \mathrm{Î»}\left({x}_{0},{x}_{1}\right)|d\left({x}_{2k},{x}_{2k+1}\right)|+\mathrm{Î¼}\left({x}_{0},{x}_{1}\right)|d\left({x}_{2k+2},{x}_{2k+1}\right)|,\end{array}$

which implies that

$|d\left({x}_{2k+2},{x}_{2k+1}\right)|â‰¤\frac{\mathrm{Î»}\left({x}_{0},{x}_{1}\right)}{1âˆ’\mathrm{Î¼}\left({x}_{0},{x}_{1}\right)}|d\left({x}_{2k},{x}_{2k+1}\right)|.$
(10)

Let $h=\frac{\mathrm{Î»}\left({x}_{0},{x}_{1}\right)}{1âˆ’\mathrm{Î¼}\left({x}_{0},{x}_{1}\right)}<1$. Then we have

(11)

From Lemma 2.3, we have $\left\{{x}_{n}\right\}$ is a Cauchy sequence in $\left(X,d\right)$. By the completeness of X, there exists $zâˆˆX$ such that ${x}_{n}â†’z$ as $nâ†’\mathrm{âˆž}$.

Next, we show that z is a fixed point of S. By (6) and Proposition 2.1, we have

$\begin{array}{rcl}d\left(z,Sz\right)& â‰¾& d\left(z,T{x}_{2n+1}\right)+d\left(T{x}_{2n+1},Sz\right)\\ =& d\left(z,{x}_{2n+2}\right)+d\left(Sz,T{x}_{2n+1}\right)\\ â‰¾& d\left(z,{x}_{2n+2}\right)+\mathrm{Î»}\left(z,{x}_{2n+1}\right)d\left(z,{x}_{2n+1}\right)+\mathrm{Î¼}\left(z,{x}_{2n+1}\right)\frac{d\left(z,Sz\right)d\left({x}_{2n+1},T{x}_{2n+1}\right)}{1+d\left(z,{x}_{2n+1}\right)}\\ +\mathrm{Î³}\left(z,{x}_{2n+1}\right)\frac{d\left({x}_{2n+1},Sz\right)d\left(z,T{x}_{2n+1}\right)}{1+d\left(z,{x}_{2n+1}\right)}\\ â‰¾& d\left(z,{x}_{2n+2}\right)+\mathrm{Î»}\left(z,{x}_{1}\right)d\left(z,{x}_{2n+1}\right)+\mathrm{Î¼}\left(z,{x}_{1}\right)\frac{d\left(z,Sz\right)d\left({x}_{2n+1},{x}_{2n+2}\right)}{1+d\left(z,{x}_{2n+1}\right)}\\ +\mathrm{Î³}\left(z,{x}_{1}\right)\frac{d\left({x}_{2n+1},Sz\right)d\left(z,{x}_{2n+2}\right)}{1+d\left(z,{x}_{2n+1}\right)}.\end{array}$

Thus, $d\left(z,Sz\right)=0$ and hence $z=Sz$.

We also show that z is a fixed point of T. By (6), we have

$\begin{array}{rcl}d\left(z,Tz\right)& â‰¾& d\left(z,S{x}_{2n}\right)+d\left(S{x}_{2n},Tz\right)\\ â‰¾& d\left(z,{x}_{2n+1}\right)+\mathrm{Î»}\left({x}_{2n},z\right)d\left({x}_{2n},z\right)+\mathrm{Î¼}\left({x}_{2n},z\right)\frac{d\left({x}_{2n},S{x}_{2n}\right)d\left(z,Tz\right)}{1+d\left({x}_{2n},z\right)}\\ +\mathrm{Î³}\left({x}_{2n},z\right)\frac{d\left(z,S{x}_{2n}\right)d\left({x}_{2n},Ty\right)}{1+d\left({x}_{2n},z\right)}\\ â‰¾& d\left(z,{x}_{2n+1}\right)+\mathrm{Î»}\left({x}_{0},z\right)d\left({x}_{2n},z\right)+\mathrm{Î¼}\left({x}_{0},z\right)\frac{d\left({x}_{2n},{x}_{2n+1}\right)d\left(z,Tz\right)}{1+d\left({x}_{2n},z\right)}\\ +\mathrm{Î³}\left({x}_{0},z\right)\frac{d\left(z,{x}_{2n+1}\right)d\left({x}_{2n},Ty\right)}{1+d\left({x}_{2n},z\right)}.\end{array}$

Thus, $d\left(z,Tz\right)=0$ and hence $z=Tz$. Therefore, z is a common fixed point of S and T.

Finally, we show the uniqueness. Suppose that there is ${z}^{âˆ—}âˆˆX$ such that ${z}^{âˆ—}=S{z}^{âˆ—}=T{z}^{âˆ—}$. Then

$\begin{array}{rcl}d\left(z,{z}^{âˆ—}\right)& =& d\left(Sz,T{z}^{âˆ—}\right)\\ â‰¾& \mathrm{Î»}\left(z,{z}^{âˆ—}\right)d\left(z,{z}^{âˆ—}\right)+\mathrm{Î¼}\left(z,{z}^{âˆ—}\right)\frac{d\left(z,Sz\right)d\left({z}^{âˆ—},T{z}^{âˆ—}\right)}{1+d\left(z,{z}^{âˆ—}\right)}+\mathrm{Î³}\left(z,{z}^{âˆ—}\right)\frac{d\left({z}^{âˆ—},Sz\right)d\left(z,T{z}^{âˆ—}\right)}{1+d\left(z,{z}^{âˆ—}\right)}\\ =& \mathrm{Î»}\left(z,{z}^{âˆ—}\right)d\left(z,{z}^{âˆ—}\right)+\mathrm{Î³}\left(z,{z}^{âˆ—}\right)\frac{d\left({z}^{âˆ—},z\right)d\left(z,{z}^{âˆ—}\right)}{1+d\left(z,{z}^{âˆ—}\right)}.\end{array}$

Therefore, we have

$\begin{array}{rcl}|d\left(z,{z}^{âˆ—}\right)|& â‰¤& \mathrm{Î»}\left(z,{z}^{âˆ—}\right)|d\left(z,{z}^{âˆ—}\right)|+\mathrm{Î³}\left(z,{z}^{âˆ—}\right)|d\left(z,{z}^{âˆ—}\right)||\frac{d\left(z,{z}^{âˆ—}\right)}{1+d\left(z,{z}^{âˆ—}\right)}|\\ â‰¤& \mathrm{Î»}\left(z,{z}^{âˆ—}\right)|d\left(z,{z}^{âˆ—}\right)|+\mathrm{Î³}\left(z,{z}^{âˆ—}\right)|d\left(z,{z}^{âˆ—}\right)|\\ â‰¤& \left(\mathrm{Î»}\left(z,{z}^{âˆ—}\right)+\mathrm{Î³}\left(z,{z}^{âˆ—}\right)\right)|d\left(z,{z}^{âˆ—}\right)|.\end{array}$

Since $\mathrm{Î»}\left(z,{z}^{âˆ—}\right)+\mathrm{Î³}\left(z,{z}^{âˆ—}\right)<1$, we have $|d\left(z,{z}^{âˆ—}\right)|=0$. Thus $z={z}^{âˆ—}$.â€ƒâ–¡

By setting $S=T$ in Theorem 2.4, we deduce the following corollary.

Corollary 2.5 Let $\left(X,d\right)$ be a complete complex valued metric space and $T:Xâ†’X$. If there exist mappings $\mathrm{Î»},\mathrm{Î¼},\mathrm{Î³}:XÃ—Xâ†’\left[0,1\right)$ such that for all $x,yâˆˆX$:

1. (a)

$\mathrm{Î»}\left(Tx,y\right)â‰¤\mathrm{Î»}\left(x,y\right)$ and $\mathrm{Î»}\left(x,Ty\right)â‰¤\mathrm{Î»}\left(x,y\right)$,

$\mathrm{Î¼}\left(Tx,y\right)â‰¤\mathrm{Î¼}\left(x,y\right)$ and $\mathrm{Î¼}\left(x,Ty\right)â‰¤\mathrm{Î¼}\left(x,y\right)$,

$\mathrm{Î³}\left(Tx,y\right)â‰¤\mathrm{Î³}\left(x,y\right)$ and $\mathrm{Î³}\left(x,Ty\right)â‰¤\mathrm{Î³}\left(x,y\right)$;

1. (b)

$\mathrm{Î»}\left(x,y\right)+\mathrm{Î¼}\left(x,y\right)+\mathrm{Î³}\left(x,y\right)<1$;(c)

$d\left(Tx,Ty\right)â‰¾\mathrm{Î»}\left(x,y\right)d\left(x,y\right)+\mathrm{Î¼}\left(x,y\right)\frac{d\left(x,Tx\right)d\left(y,Ty\right)}{1+d\left(x,y\right)}+\mathrm{Î³}\left(x,y\right)\frac{d\left(y,Tx\right)d\left(x,Ty\right)}{1+d\left(x,y\right)}.$
(12)

Then T has a unique common fixed point.

By choosing $\mathrm{Î³}=0$ in Theorem 2.4, we deduce the following corollary.

Corollary 2.6 Let $\left(X,d\right)$ be a complete complex valued metric space and $S,T:Xâ†’X$. If there exist mappings $\mathrm{Î»},\mathrm{Î¼}:XÃ—Xâ†’\left[0,1\right)$ such that for all $x,yâˆˆX$:

1. (a)

$\mathrm{Î»}\left(TSx,y\right)â‰¤\mathrm{Î»}\left(x,y\right)$ and $\mathrm{Î»}\left(x,STy\right)â‰¤\mathrm{Î»}\left(x,y\right)$,

$\mathrm{Î¼}\left(TSx,y\right)â‰¤\mathrm{Î¼}\left(x,y\right)$ and $\mathrm{Î¼}\left(x,STy\right)â‰¤\mathrm{Î¼}\left(x,y\right)$;

1. (b)

$\mathrm{Î»}\left(x,y\right)+\mathrm{Î¼}\left(x,y\right)<1$;(c)

$d\left(Sx,Ty\right)â‰¾\mathrm{Î»}\left(x,y\right)d\left(x,y\right)+\mathrm{Î¼}\left(x,y\right)\frac{d\left(x,Sx\right)d\left(y,Ty\right)}{1+d\left(x,y\right)}.$
(13)

Then S and T have a unique common fixed point.

By choosing $\mathrm{Î¼}=0$ in Theorem 2.4, we deduce the following corollary.

Corollary 2.7 Let $\left(X,d\right)$ be a complete complex valued metric space and $S,T:Xâ†’X$. If there exist mappings $\mathrm{Î»},\mathrm{Î³}:XÃ—Xâ†’\left[0,1\right)$ such that for all $x,yâˆˆX$:

1. (a)

$\mathrm{Î»}\left(TSx,y\right)â‰¤\mathrm{Î»}\left(x,y\right)$ and $\mathrm{Î»}\left(x,STy\right)â‰¤\mathrm{Î»}\left(x,y\right)$,

$\mathrm{Î³}\left(TSx,y\right)â‰¤\mathrm{Î³}\left(x,y\right)$ and $\mathrm{Î³}\left(x,STy\right)â‰¤\mathrm{Î³}\left(x,y\right)$;

1. (b)

$\mathrm{Î»}\left(x,y\right)+\mathrm{Î³}\left(x,y\right)<1$;(c)

$d\left(Sx,Ty\right)â‰¾\mathrm{Î»}\left(x,y\right)d\left(x,y\right)+\mathrm{Î³}\left(x,y\right)\frac{d\left(y,Sx\right)d\left(x,Ty\right)}{1+d\left(x,y\right)}.$
(14)

Then S and T have a unique common fixed point.

The following result is closely related to Corollary 2.5 with $\mathrm{Î³}=0$. The real valued metric space version of this result is an extension of Dass and Guptaâ€™s result [7].

Theorem 2.8 Let $\left(X,d\right)$ be a complete complex valued metric space and $T:Xâ†’X$. If there exist mappings $\mathrm{Î»},\mathrm{Î¼}:XÃ—Xâ†’\left[0,1\right)$ such that for all $x,yâˆˆX$:

1. (a)

$\mathrm{Î»}\left(Tx,y\right)â‰¤\mathrm{Î»}\left(x,y\right)$ and $\mathrm{Î»}\left(x,Ty\right)â‰¤\mathrm{Î»}\left(x,y\right)$,

$\mathrm{Î¼}\left(Tx,y\right)â‰¤\mathrm{Î¼}\left(x,y\right)$ and $\mathrm{Î¼}\left(x,Ty\right)â‰¤\mathrm{Î¼}\left(x,y\right)$;

1. (b)

$\mathrm{Î»}\left(x,y\right)+\mathrm{Î¼}\left(x,y\right)<1$;(c)

$d\left(Tx,Ty\right)â‰¾\mathrm{Î»}\left(x,y\right)d\left(x,y\right)+\mathrm{Î¼}\left(x,y\right)\frac{d\left(y,Ty\right)\left[1+d\left(x,Tx\right)\right]}{1+d\left(x,y\right)}.$
(15)

Then T has a unique fixed point.

Proof Let ${x}_{0}âˆˆX$ and the sequence $\left\{{x}_{n}\right\}$ be defined by

(16)

We show that $\left\{{x}_{n}\right\}$ is a Cauchy sequence. From (15), we have

$\begin{array}{rcl}d\left({x}_{n+1},{x}_{n+2}\right)& =& d\left(T{x}_{n},T{x}_{n+1}\right)\\ â‰¾& \mathrm{Î»}\left({x}_{n},{x}_{n+1}\right)d\left({x}_{n},{x}_{n+1}\right)+\mathrm{Î¼}\left({x}_{n},{x}_{n+1}\right)\frac{d\left({x}_{n+1},T{x}_{n+1}\right)\left[1+d\left({x}_{n},T{x}_{n}\right)\right]}{1+d\left({x}_{n},{x}_{n+1}\right)}\\ =& \mathrm{Î»}\left({x}_{n},{x}_{n+1}\right)d\left({x}_{n},{x}_{n+1}\right)+\mathrm{Î¼}\left({x}_{n},{x}_{n+1}\right)\frac{d\left({x}_{n+1},{x}_{n+2}\right)\left[1+d\left({x}_{n},{x}_{n+1}\right)\right]}{1+d\left({x}_{n},{x}_{n+1}\right)}\\ =& \mathrm{Î»}\left({x}_{n},{x}_{n+1}\right)d\left({x}_{n},{x}_{n+1}\right)+\mathrm{Î¼}\left({x}_{n},{x}_{n+1}\right)d\left({x}_{n+1},{x}_{n+2}\right).\end{array}$

It follows from (a) that

$\begin{array}{rcl}d\left({x}_{n+1},{x}_{n+2}\right)& â‰¾& \mathrm{Î»}\left({x}_{n},{x}_{n+1}\right)d\left({x}_{n},{x}_{n+1}\right)+\mathrm{Î¼}\left({x}_{n},{x}_{n+1}\right)d\left({x}_{n+1},{x}_{n+2}\right)\\ â‰¾& \mathrm{Î»}\left({x}_{0},{x}_{n+1}\right)d\left({x}_{n},{x}_{n+1}\right)+\mathrm{Î¼}\left({x}_{0},{x}_{n+1}\right)d\left({x}_{n+1},{x}_{n+2}\right)\\ â‰¾& \mathrm{Î»}\left({x}_{0},{x}_{0}\right)d\left({x}_{n},{x}_{n+1}\right)+\mathrm{Î¼}\left({x}_{0},{x}_{0}\right)d\left({x}_{n+1},{x}_{n+2}\right).\end{array}$

Therefore,

$|d\left({x}_{n+1},{x}_{n+2}\right)|â‰¤\mathrm{Î»}\left({x}_{0},{x}_{0}\right)|d\left({x}_{n},{x}_{n+1}\right)|+\mathrm{Î¼}\left({x}_{0},{x}_{0}\right)|d\left({x}_{n+1},{x}_{n+2}\right)|,$

and hence

(17)

Let $h=\frac{\mathrm{Î»}\left({x}_{0},{x}_{0}\right)}{1âˆ’\mathrm{Î¼}\left({x}_{0},{x}_{0}\right)}<1$. Then

From Lemma 2.3, we have $\left\{{x}_{n}\right\}$ is a Cauchy sequence in $\left(X,d\right)$. By the completeness of X, there exists $zâˆˆX$ such that ${x}_{n}â†’z$ as $nâ†’\mathrm{âˆž}$. Next, we show that z is a fixed point of T. Then

$\begin{array}{rcl}d\left(z,Tz\right)& â‰¾& d\left(z,T{x}_{n}\right)+d\left(T{x}_{n},Tz\right)\\ â‰¾& d\left(z,{x}_{n+1}\right)+\mathrm{Î»}\left({x}_{n},z\right)d\left({x}_{n},z\right)+\mathrm{Î¼}\left({x}_{n},z\right)\frac{d\left(z,Tz\right)\left[1+d\left({x}_{n},T{x}_{n}\right)\right]}{1+d\left(z,{x}_{n}\right)}\\ â‰¾& d\left(z,{x}_{n+1}\right)+\mathrm{Î»}\left({x}_{0},z\right)d\left({x}_{n},z\right)+\mathrm{Î¼}\left({x}_{0},z\right)\frac{d\left(z,Tz\right)\left[1+d\left({x}_{n},{x}_{n+1}\right)\right]}{1+d\left(z,{x}_{n}\right)}.\end{array}$

Notice that $\mathrm{Î¼}\left({x}_{0},z\right)âˆˆ\left[0,1\right)$. Therefore, we get $d\left(z,Tz\right)â‰¾\mathrm{Î¼}\left({x}_{0},z\right)d\left(z,Tz\right)$, that is, $z=Tz$.

Finally, we show the uniqueness. Suppose that there is ${z}^{âˆ—}âˆˆX$ such that ${z}^{âˆ—}=T{z}^{âˆ—}$. Then

$\begin{array}{rcl}d\left(z,{z}^{âˆ—}\right)& =& d\left(Tz,T{z}^{âˆ—}\right)\\ â‰¾& \mathrm{Î»}\left(z,{z}^{âˆ—}\right)d\left(z,{z}^{âˆ—}\right)+\mathrm{Î¼}\left(z,{z}^{âˆ—}\right)\frac{d\left({z}^{âˆ—},T{z}^{âˆ—}\right)\left[1+d\left(z,Tz\right)\right]}{1+d\left(z,{z}^{âˆ—}\right)}\\ =& \mathrm{Î»}\left(z,{z}^{âˆ—}\right)d\left(z,{z}^{âˆ—}\right).\end{array}$

Since $\mathrm{Î»}\left(z,{z}^{âˆ—}\right)âˆˆ\left[0,1\right)$, we have $d\left(z,{z}^{âˆ—}\right)=0$, that is, $z={z}^{âˆ—}$. This completes the proof.â€ƒâ–¡

3 Deduced results

3.1 Sintunavarat and Kumamâ€™s results

We deduce the main result of [4] as follows.

Theorem 3.1 ([[4], Theorem 3.1])

Let $\left(X,d\right)$ be a complete complex valued metric space and $S,T:Xâ†’X$. If there exist mappings $\mathrm{Î›},\mathrm{Îž}:Xâ†’\left[0,1\right)$ such that for all $x,yâˆˆX$:

1. (i)

$\mathrm{Î›}\left(Sx\right)â‰¤\mathrm{Î›}\left(x\right)$ and $\mathrm{Îž}\left(Sx\right)â‰¤\mathrm{Îž}\left(x\right)$;

2. (ii)

$\mathrm{Î›}\left(Tx\right)â‰¤\mathrm{Î›}\left(x\right)$ and $\mathrm{Îž}\left(Tx\right)â‰¤\mathrm{Îž}\left(x\right)$;

3. (iii)

$\left(\mathrm{Î›}+\mathrm{Îž}\right)\left(x\right)<1$;(iv)

$d\left(Sx,Ty\right)â‰¾\mathrm{Î›}\left(x\right)d\left(x,y\right)+\frac{\mathrm{Îž}\left(x\right)d\left(x,Sx\right)d\left(y,Ty\right)}{1+d\left(x,y\right)}.$

Then S and T have a unique common fixed point.

Proof Define $\mathrm{Î»},\mathrm{Î¼}:XÃ—Xâ†’\left[0,1\right)$ by

(18)

Then for all $x,yâˆˆX$,

1. (a)

$\mathrm{Î»}\left(TSx,y\right)=\mathrm{Î›}\left(TSx\right)â‰¤\mathrm{Î›}\left(Sx\right)â‰¤\mathrm{Î›}\left(x\right)=\mathrm{Î»}\left(x,y\right)$ and $\mathrm{Î»}\left(x,STy\right)=\mathrm{Î›}\left(x\right)=\mathrm{Î»}\left(x,y\right)$;

$\mathrm{Î¼}\left(TSx,y\right)=\mathrm{Îž}\left(TSx\right)â‰¤\mathrm{Îž}\left(Sx\right)â‰¤\mathrm{Îž}\left(x\right)=\mathrm{Î¼}\left(x,y\right)$ and $\mathrm{Î¼}\left(x,STy\right)=\mathrm{Îž}\left(x\right)=\mathrm{Î¼}\left(x,y\right)$;

1. (b)

$\mathrm{Î»}\left(x,y\right)+\mathrm{Î¼}\left(x,y\right)=\mathrm{Î›}\left(x\right)+\mathrm{Îž}\left(x\right)<1$;(c)

$\begin{array}{rcl}d\left(Sx,Ty\right)& â‰¾& \mathrm{Î›}\left(x\right)d\left(x,y\right)+\frac{\mathrm{Îž}\left(x\right)d\left(x,Sx\right)d\left(y,Ty\right)}{1+d\left(x,y\right)}\\ =& \mathrm{Î»}\left(x,y\right)d\left(x,y\right)+\mathrm{Î¼}\left(x,y\right)\frac{d\left(x,Sx\right)d\left(y,Ty\right)}{1+d\left(x,y\right)}.\end{array}$

By Corollary 2.6, S and T have a unique common fixed point.â€ƒâ–¡

Remark 1 It is worth mentioning that (i) and (ii) of Theorem 3.1 above can be weakened by the condition

3.2 Rouzkard and Imdadâ€™s results

The following corollary is easily obtained from our Theorem 2.4.

Corollary 3.2 Let $\left(X,d\right)$ be a complete complex valued metric space and $S,T:Xâ†’X$. If there exist mappings $\mathrm{Î»},\mathrm{Î¼},\mathrm{Î³}:Xâ†’\left[0,1\right)$ such that for all $x,yâˆˆX$:

1. (a)

$\mathrm{Î»}\left(TSx\right)â‰¤\mathrm{Î»}\left(x\right)$, $\mathrm{Î¼}\left(TSx\right)â‰¤\mathrm{Î¼}\left(x\right)$ and $\mathrm{Î³}\left(TSx\right)â‰¤\mathrm{Î³}\left(x\right)$;

2. (b)

$\mathrm{Î»}\left(x\right)+\mathrm{Î¼}\left(x\right)+\mathrm{Î³}\left(y\right)<1$;(c)

$d\left(Sx,Ty\right)â‰¾\mathrm{Î»}\left(x\right)d\left(x,y\right)+\mathrm{Î¼}\left(x\right)\frac{d\left(x,Sx\right)d\left(y,Ty\right)}{1+d\left(x,y\right)}+\mathrm{Î³}\left(x\right)\frac{d\left(y,Sx\right)d\left(x,Ty\right)}{1+d\left(x,y\right)}.$
(19)

Then S and T have a unique common fixed point.

Proof Define $\mathrm{Î»},\mathrm{Î¼},\mathrm{Î³}:XÃ—Xâ†’\left[0,1\right)$ by

(20)

Then for all $x,yâˆˆX$,

1. (a)

$\mathrm{Î»}\left(TSx,y\right)=\mathrm{Î»}\left(TSx\right)â‰¤\mathrm{Î»}\left(x\right)=\mathrm{Î»}\left(x,y\right)$ and $\mathrm{Î»}\left(x,STy\right)=\mathrm{Î»}\left(x\right)=\mathrm{Î»}\left(x,y\right)$;

$\mathrm{Î¼}\left(TSx,y\right)=\mathrm{Î¼}\left(TSx\right)â‰¤\mathrm{Î¼}\left(x\right)=\mathrm{Î¼}\left(x,y\right)$ and $\mathrm{Î¼}\left(x,STy\right)=\mathrm{Î¼}\left(x\right)=\mathrm{Î¼}\left(x,y\right)$;

$\mathrm{Î³}\left(TSx,y\right)=\mathrm{Î³}\left(TSx\right)â‰¤\mathrm{Î³}\left(x\right)=\mathrm{Î³}\left(x,y\right)$ and $\mathrm{Î³}\left(x,STy\right)=\mathrm{Î³}\left(x\right)=\mathrm{Î³}\left(x,y\right)$;

1. (b)

$\mathrm{Î»}\left(x,y\right)+\mathrm{Î¼}\left(x,y\right)+\mathrm{Î³}\left(x,y\right)=\mathrm{Î»}\left(x\right)+\mathrm{Î¼}\left(x\right)+\mathrm{Î³}\left(x\right)<1$;(c)

$\begin{array}{rcl}d\left(Sx,Ty\right)& â‰¾& \mathrm{Î»}\left(x\right)d\left(x,y\right)+\mathrm{Î¼}\left(x\right)\frac{d\left(x,Sx\right)d\left(y,Ty\right)}{1+d\left(x,y\right)}+\mathrm{Î³}\left(x\right)\frac{d\left(y,Sx\right)d\left(x,Ty\right)}{1+d\left(x,y\right)}\\ =& \mathrm{Î»}\left(x,y\right)d\left(x,y\right)+\mathrm{Î¼}\left(x,y\right)\frac{d\left(x,Sx\right)d\left(y,Ty\right)}{1+d\left(x,y\right)}+\mathrm{Î³}\left(x,y\right)\frac{d\left(y,Sx\right)d\left(x,Ty\right)}{1+d\left(x,y\right)}.\end{array}$

By Theorem 2.4, S and T have a unique common fixed point.â€ƒâ–¡

Letting $\mathrm{Î»}\left(â‹\dots \right)=\mathrm{Î»}$, $\mathrm{Î¼}\left(â‹\dots \right)=\mathrm{Î¼}$ and $\mathrm{Î³}\left(â‹\dots \right)=\mathrm{Î³}$ in Corollary 3.2 gives the following result proved by Rouzkard and Imdad in [5].

Corollary 3.3 ([5])

If S and T are self-mappings defined on a complete complex valued metric space $\left(X,d\right)$ satisfying the condition

$d\left(Sx,Ty\right)â‰¾\mathrm{Î»}d\left(x,y\right)+\mathrm{Î¼}\frac{d\left(x,Sx\right)d\left(y,Ty\right)}{1+d\left(x,y\right)}+\mathrm{Î³}\frac{d\left(y,Sx\right)d\left(x,Ty\right)}{1+d\left(x,y\right)}$

for all $x,yâˆˆX$, where Î», Î¼, Î³ are nonnegative reals with $\mathrm{Î»}+\mathrm{Î¼}+\mathrm{Î³}<1$, then S and T have a unique common fixed point.

3.3 Dass and Guptaâ€™s results

Applying the proof of our Theorem 2.8, we can deduce the following result of Dass and Gupta [7] in the context of real valued metric spaces.

Theorem 3.4 ([7])

Let $\left(X,d\right)$ be a real valued metric space. Let $T:Xâ†’X$ be such that (i)

$d\left(Tx,Ty\right)â‰¤\mathrm{Î»}d\left(x,y\right)+\frac{\mathrm{Î¼}d\left(y,Ty\right)\left[1+d\left(x,Tx\right)\right]}{1+d\left(x,y\right)}$

for all $x,yâˆˆX$, $\mathrm{Î»}>0$, $\mathrm{Î¼}>0$, $\mathrm{Î»}+\mathrm{Î¼}<1$, and

1. (ii)

for some ${x}_{0}âˆˆX$, the sequence of iterates $\left\{{T}^{n}\left({x}_{0}\right)\right\}$ has a subsequence $\left\{{T}^{{n}_{k}}\left({x}_{0}\right)\right\}$ with $z={lim}_{kâ†’\mathrm{âˆž}}{T}^{{n}_{k}}\left({x}_{0}\right)$.

Then z is a unique fixed point of T.

Proof Define $\mathrm{Î»},\mathrm{Î¼}:XÃ—Xâ†’\left[0,1\right)$ by

Then the conditions (a), (b) and (c) of Theorem 2.8 are satisfied. Hence, we have $\left\{{x}_{n}\right\}$ is a Cauchy sequence in $\left(X,d\right)$. By (ii), the whole sequence ${x}_{n}â†’z$ as $nâ†’\mathrm{âˆž}$. It follows again from the proof of Theorem 2.8 that z is a unique fixed point of T as desired.â€ƒâ–¡

References

1. Azam A, Fisher B, Khan M: Common fixed point theorems in complex valued metric spaces. Numer. Funct. Anal. Optim. 2011, 32(3):243â€“253. 10.1080/01630563.2011.533046

2. Ding HS, Kadelburg Z, Karapinar E, RadenoviÄ‡ S: Common fixed points of weak contractions in cone metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 793862. doi:10.1155/2012/793862

3. Ding HS, Kadelburg Z, Nashine HK: Common fixed point theorems for weakly increasing mappings on ordered orbitally complete metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 85. doi:10.1186/1687â€“1812â€“2012â€“85

4. Sintunavarat W, Kumam P: Generalized common fixed point theorems in complex valued metric spaces and applications. J. Inequal. Appl. 2012., 2012: Article ID 84. doi:10.1186/1029â€“242X-2012â€“84

5. Rouzkard F, Imdad M: Some common fixed point theorems on complex valued metric spaces. Comput. Math. Appl. 2012. doi:10.1016/j.camwa.2012.02.063

6. Bhatt S, Chaukiyal S, Dimri RC: Common fixed point of mappings satisfying rational inequality in complex valued metric space. Int. J. Pure Appl. Math. 2011, 73(2):159â€“164.

7. Dass BK, Gupta S: An extension of Banach contraction principle through rational expression. Indian J. Pure Appl. Math. 1975, 6(12):1455â€“1458.

Download references

Acknowledgements

The authors thank the referee for their comments and suggestions on the manuscript. The first author is supported by Khon Kaen University-Integrated Multidisciplinary Research Cluster (Sciences and Technologies). The research work of the second author was also supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Cluster of Research to Enhance the Quality of Basic Education.

Author information

Authors

Corresponding author

Correspondence to Satit Saejung.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authorsâ€™ contributions

All authors contributed equally and significantly to this research work. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Sitthikul, K., Saejung, S. Some fixed point theorems in complex valued metric spaces. Fixed Point Theory Appl 2012, 189 (2012). https://doi.org/10.1186/1687-1812-2012-189

Download citation

• Received:

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/1687-1812-2012-189