Now, we give the main results of this paper.
Theorem 3.1
Let
\(H_{1}\), \(H_{2}\)
be two real Hilbert spaces and
\(C\subset H_{1}\), \(Q\subset H_{2}\)
be nonempty closed convex subsets. Let
\(A_{i}: H_{1}\to H_{2}\)
be a bounded linear operator for each
\(i=1,\ldots ,N_{1}\)
with
\(N_{1}\in\mathbb{N}\)
and
\(B_{i}: C\to H_{1}\)
be a
\(\beta_{i} \)-inverse strongly monotone operator for each
\(i=1,\ldots,N_{2}\)
with
\(N_{2}\in\mathbb{N}\). Assume that
\(F:C\times C\to\mathbb{R}\)
satisfies (A1)-(A4), \(F_{i}: Q\times Q\to\mathbb{R}\) (\(i=1,\ldots, N_{1}\)) satisfies (A1)-(A4). Let
\(\{S_{n}\}\)
be a countable family of nonexpansive mappings from
C
into
C. Assume that
\(\Theta=\Gamma \cap\Omega\cap \operatorname {VI}\neq\emptyset\), where
\(\Gamma=\bigcap_{n=1}^{\infty} \operatorname {Fix}(S_{n})\), \(\Omega=\{z\in C: z\in \operatorname {EP}(F)\ \textit{and}\ A_{i}z\in \operatorname {EP}(F_{i}), i=1,\ldots ,N_{1} \}\)
and
\(\operatorname {VI}=\bigcap_{i=1}^{N_{2}}\operatorname {VI}(C,B_{i})\). Let
\(\{\gamma_{1},\ldots, \gamma_{N_{2}}\}\subset (0,1)\)
with
\(\sum_{i=1}^{N_{2}}\gamma_{i}=1\). Take
\(v,x_{1}\in C\)
arbitrarily and define an iterative scheme in the following manner:
$$ \textstyle\begin{cases} u_{i,n}=T_{r_{n}}^{F}(I-\gamma A_{i}^{*}(I-T_{r_{n}}^{F_{i}})A_{i}) x_{n}, \quad i=1,\ldots , N_{1},\\ y_{n}=P_{C} (I-\lambda_{n} (\sum_{i=1}^{N_{2}}\gamma_{i} B_{i} ) ) (\frac{1}{N_{1}}\sum_{i=1}^{N_{1}}u_{i,n} ),\\ x_{n+1}=\alpha_{n} v+ \sum_{i=1}^{n}( \alpha_{i-1} - \alpha_{i} ) S_{i}y_{n}, \end{cases} $$
(3.1)
for each
\(i=1,\ldots,N_{1}\)
and
\(n\in\mathbb{N}\), where
\(\{r_{n}\}\subset (r,\infty)\)
with
\(r>0\), \(\{\lambda_{n}\}\subset(0,2\beta)\)
with
\(\beta =\min\{\beta_{1},\ldots,\beta_{N_{2}}\}\)
and
\(\gamma\subset(0,1/L^{2}]\), \(L=\max\{L_{1},\ldots,L_{N_{1}}\}\)
and
\(L_{i}\)
is the spectral radius of the operator
\(A_{i}^{*}A_{i}\)
and
\(A_{i}^{*}\)
is the adjoint of
\(A_{i}\)
for each
\(i\in\{ 1,\ldots, N_{1}\}\), and
\(\{\alpha_{n}\}\subset(0,1)\)
is a strictly decreasing sequence. Let
\(\alpha_{0}=1\)
and assume that the control sequences
\(\{\alpha_{n}\}\), \(\{\lambda_{n}\}\), \(\{r_{n}\}\)
satisfy the following conditions:
-
(1)
\(\lim_{n\to\infty}\alpha_{n}=0\)
and
\(\sum_{n=1}^{\infty}\alpha _{n}=\infty\);
-
(2)
\(\sum_{n=1}^{\infty} \vert r_{n+1}-r_{n}\vert <\infty\)
and
\(\sum_{n=1}^{\infty} \vert \lambda_{n+1}-\lambda_{n}\vert <\infty\);
-
(3)
\(\lim_{n\to\infty} \lambda_{n}=\lambda>0\).
Then the sequence
\(\{x_{n}\}\)
defined by (3.1) converges strongly to a point
\(z=P_{\Theta}v\).
Proof
We first show that, for each \(i=1,\ldots, N_{1}\) and \(n\in \mathbb{N}\), \(A_{i}^{*}(I-T_{r_{n}}^{F_{i}})A_{i}\) is a \(\frac {1}{2L_{i}^{2}}\)-inverse strongly monotone mapping. In fact, since \(T_{r_{n}}^{F_{i}}\) is (firmly) nonexpansive and \(I-T_{r_{n}}^{F_{i}}\) is \(\frac {1}{2}\)-inverse strongly monotone, we have
$$\begin{aligned} &\bigl\Vert A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i}x-A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i}y\bigr\Vert ^{2} \\ &\quad =\bigl\langle A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}}\bigr) (A_{i}x-A_{i}y), A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr) (A_{i}x-A_{i}y)\bigr\rangle \\ &\quad =\bigl\langle (I-T_{r_{n}}) (A_{i}x-A_{i}y),A_{i}A_{i}^{*} \bigl(I-T_{r_{n}}^{F_{i}}\bigr) (A_{i}x-A_{i}y) \bigr\rangle \\ &\quad \leq L_{i}^{2}\bigl\langle \bigl(I-T_{r_{n}}^{F_{i}} \bigr) (A_{i}x-A_{i}y), \bigl(I-T_{r_{n}}^{F_{i}} \bigr) (A_{i}x-A_{i}y)\bigr\rangle \\ &\quad = L_{i}^{2}\bigl\Vert \bigl(I-T_{r_{n}}^{F_{i}} \bigr) (A_{i}x-A_{i}y)\bigr\Vert ^{2} \\ &\quad \leq2L_{i}^{2}\bigl\langle A_{i}x-A_{i}y, \bigl(I-T_{r_{n}}^{F_{i}}\bigr) (A_{i}x-A_{i}y) \bigr\rangle \\ &\quad =2L_{i}^{2} \bigl\langle x-y, A_{i}^{*} \bigl(I-T_{r_{n}}^{F_{i}}\bigr) A_{i}x-A_{i}^{*} \bigl(I-T_{r_{n}}^{F_{i}}\bigr) A_{i} y\bigr\rangle \end{aligned}$$
for all \(x,y\in H_{1}\), which implies that \(A_{i}^{*}(I-T_{r_{n}}^{F_{i}})A_{i}\) is a \(\frac {1}{2L_{i}^{2}}\)-inverse strongly monotone mapping. Note that \(\gamma\in (0,\frac{1}{L_{i}^{2}}]\). Thus \(I-\gamma A_{i}^{*}(I-T_{r_{n}}^{F_{i}})A_{i}\) is nonexpansive for each \(i=1,\ldots, N_{1}\) and \(n\in\mathbb{N}\).
Now, we complete the proof by the next steps.
Step 1. \(\{x_{n}\}\) is bounded.
Let \(p\in\Theta\). Then \(p=T_{r_{n}}^{F_{i}}p\) and \((I-\gamma A_{i}^{*}(I-T_{r_{n}}^{F_{i}})A_{i})p=p\). Thus we have
$$\begin{aligned} \Vert u_{i,n}-p\Vert &=\bigl\Vert T_{r_{n}}^{F } \bigl(I-\gamma A_{i}^{*}\bigl(I-T_{r_{n}}^{F } \bigr)A_{i}\bigr)x_{n}-T_{r_{n}}^{F_{i}}\bigl(I- \gamma A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i}\bigr)p\bigr\Vert \\ &\leq\bigl\Vert \bigl(I-\gamma A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i}\bigr)x_{n}-\bigl(I-\gamma A^{*} \bigl(I-T_{r_{n}}^{F_{i}}\bigr)A_{i}\bigr)p\bigr\Vert \\ &\leq \Vert x_{n}-p\Vert . \end{aligned}$$
(3.2)
Let \(B=\sum_{i=1}^{N_{2}}\gamma_{i} B_{i}\). Then B is a β-inverse strongly monotone mapping. Since \(\{\lambda_{n}\}\subset(0,2\beta)\), \(I-\lambda_{n} B \) is nonexpansive. Thus from (3.2), we have
$$\begin{aligned} \Vert y_{n}-p\Vert &= \Biggl\Vert P_{C}(I- \lambda_{n} B) \frac{1}{N_{1}} \sum_{i=1}^{N_{1}}u_{i,n}-P_{C}(I- \lambda_{n} B)p \Biggr\Vert \\ &\leq \Biggl\Vert (I-\lambda_{n} B)\frac{1}{N_{1}} \sum _{i=1}^{N_{1}}u_{i,n} -(I-\lambda_{n} B)p \Biggr\Vert \\ &\leq \Biggl\Vert \frac{1}{N_{1}} \sum_{i=1}^{N_{1}}u_{i,n}-p \Biggr\Vert \\ &\leq\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \Vert u_{i,n}-p\Vert \\ &\leq \Vert x_{n}-p\Vert . \end{aligned}$$
(3.3)
Thus from (3.3), it follows that
$$\begin{aligned} \Vert x_{n+1}-p\Vert &=\Biggl\Vert \alpha_{n}(v-p)+ \sum_{i=1}^{n}(\alpha_{i-1}-\alpha _{i}) (S_{i}y_{n}-S_{i}p) \Biggr\Vert \\ &\leq\alpha_{n}\Vert v-p\Vert + \sum_{i=1}^{n}( \alpha_{i-1}-\alpha_{i})\Vert y_{n}- p \Vert \\ &\leq\alpha_{n}\Vert v-p\Vert + \sum_{i=1}^{n}( \alpha_{i-1}-\alpha_{i})\Vert x_{n}- p \Vert \\ &=\alpha_{n}\Vert v-p\Vert + (1-\alpha_{n})\Vert x_{n}- p \Vert \\ &\leq \max\bigl\{ \Vert v-p\Vert ,\Vert x_{n}-p\Vert \bigr\} \end{aligned} $$
for all \(n\in\mathbb{N}\), which implies that \(\{x_{n}\}\) is bounded and so are \(\{u_{i,n}\}\) (\(i=1,\ldots,N_{1}\)) and \(\{y_{n}\}\).
Step 2. \(\lim_{n\to\infty} \Vert x_{n+1}-x_{n}\Vert =0\) and \(\lim_{n\to\infty }\Vert u_{i,n+1}-u_{i,n}\Vert =0\) for each \(i=1,\ldots, N_{1}\).
Since the mappings \(I-\gamma A^{*}(I-T_{r_{n}}^{F_{i}})A\) are nonexpansive, by Lemmas 2.2 and 2.3, we have
$$\begin{aligned} & \Vert u_{i,n+1}-u_{i,n}\Vert \\ &\quad=\bigl\Vert T_{r_{n+1}}^{F}\bigl(I-\gamma A_{i}^{*} \bigl(I-T_{r_{n+1}}^{F_{i}}\bigr)A_{i}\bigr)x_{n+1}-T_{r_{n}}^{F} \bigl(I-\gamma A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i}\bigr)x_{n}\bigr\Vert \\ &\quad\leq\bigl\Vert \bigl(I-\gamma A_{i}^{*}\bigl(I-T_{r_{n+1}}^{F_{i}} \bigr)A_{i}\bigr)x_{n+1}-\bigl(I-\gamma A_{i}^{*} \bigl(I-T_{r_{n}}^{F_{i}}\bigr)A_{i}\bigr)x_{n} \bigr\Vert \\ &\qquad{}+\frac{\vert r_{n+1}-r_{n}\vert }{r_{n+1}}\bigl\Vert T_{r_{n+1}}^{F}\bigl(I-\gamma A_{i}^{*}\bigl(I-T_{r_{n+1}}^{F_{i}}\bigr)A_{i} \bigr)x_{n+1}-\bigl(I-\gamma A_{i}^{*}\bigl(I-T_{r_{n+1}}^{F_{i}} \bigr)A_{i}\bigr)x_{n+1}\bigr\Vert \\ &\quad\leq \Vert x_{n+1}-x_{n}\Vert +\bigl\Vert \bigl(I- \gamma A_{i}^{*}\bigl(I-T_{r_{n+1}}^{F_{i}} \bigr)A_{i}\bigr)x_{n}-\bigl(I-\gamma A_{i}^{*} \bigl(I-T_{r_{n}}^{F_{i}}\bigr)A_{i}\bigr)x_{n} \bigr\Vert \\ &\qquad{}+\frac{\vert r_{n+1}-r_{n}\vert }{r_{n+1}}\delta_{n+1} \\ &\quad=\Vert x_{n+1}-x_{n}\Vert +\bigl\Vert \gamma A_{i}^{*}\bigl( T_{r_{n+1}}^{F_{i}} A_{i} x_{n}- T_{r_{n}}^{F_{i}} A_{i} x_{n} \bigr)\bigr\Vert +\frac{\vert r_{n+1}-r_{n}\vert }{r_{n+1}}\delta_{n+1} \\ &\quad\leq \Vert x_{n+1}-x_{n}\Vert + \gamma\bigl\Vert A_{i}^{*}\bigr\Vert \biggl[\frac {\vert r_{n+1}-r_{n}\vert }{r_{n+1}} \bigl\vert \bigl\langle T_{r_{n+1}}^{F_{i}} A_{i} x_{n}- T_{r_{n}}^{F_{i}} A_{i} x_{n}, T_{r_{n+1}}^{F_{i}} A_{i} x_{n}- A_{i} x_{n}\bigr\rangle \bigr\vert \biggr]^{\frac{1}{2}} \\ &\qquad{} +\frac{\vert r_{n+1}-r_{n}\vert }{r }\delta_{n+1} \\ &\quad\leq \Vert x_{n+1}-x_{n}\Vert + \gamma\bigl\Vert A_{i}^{*}\bigr\Vert \biggl[\frac{\vert r_{n+1}-r_{n}\vert }{r }\sigma_{n+1} \biggr]^{\frac{1}{2}} +\frac{\vert r_{n+1}-r_{n}\vert }{r }\delta _{n+1} \\ &\quad\leq \Vert x_{n+1}-x_{n}\Vert +\eta_{i,n+1}, \end{aligned}$$
(3.4)
where
$$\begin{aligned}& \sigma_{n+1}=\sup_{n\in\mathbb{N}} \bigl\vert \bigl\langle T_{r_{n+1}}^{F_{i}} A_{i} x_{n}- T_{r_{n}}^{F_{i}} A_{i} x_{n}, T_{r_{n+1}}^{F_{i}} A_{i} x_{n}- A_{i} x_{n}\bigr\rangle \bigr|, \\& \delta_{n+1}=\sup_{n\in\mathbb{N}}\bigl\Vert T_{r_{n+1}}^{F}\bigl(I-\gamma A_{i}^{*} \bigl(I-T_{r_{n+1}}^{F_{i}}\bigr)A_{i}\bigr)x_{n+1}- \bigl(I-\gamma A_{i}^{*}\bigl(I-T_{r_{n+1}}^{F_{i}} \bigr)A_{i}\bigr)x_{n+1}\bigr\Vert , \end{aligned}$$
and
$$\eta_{i,n+1}=\gamma\bigl\Vert A_{i}^{*}\bigr\Vert \biggl[ \frac{\vert r_{n+1}-r_{n}\vert }{r }\sigma _{n+1} \biggr]^{\frac{1}{2}}+\frac{\vert r_{n+1}-r_{n}\vert }{r } \delta_{n+1}. $$
Note that
$$ \begin{aligned}[b] & \Biggl\Vert (I-\lambda_{n+1}B)\frac{1}{N_{1}}\sum _{i=1}^{N_{1}}u_{i,n+1} -(I- \lambda_{n}B)\frac{1}{N_{1}}\sum_{i=1}^{N_{1}}u_{i,n} \Biggr\Vert \\ &\quad= \Biggl\Vert (I-\lambda_{n+1}B)\frac{1}{N_{1}}\sum _{i=1}^{N_{1}}u_{i,n+1} -(I-\lambda_{n+1}B) \frac{1}{N_{1}}\sum_{i=1}^{N_{1}}u_{i,n} +(\lambda _{n}-\lambda_{n+1})Bw_{n} \Biggr\Vert \\ &\quad\leq \Biggl\Vert (I-\lambda_{n+1}B)\frac{1}{N_{1}}\sum _{i=1}^{N_{1}}u_{i,n+1} -(I-\lambda_{n+1}B) \frac{1}{N_{1}}\sum_{i=1}^{N_{1}}u_{i,n} \Biggr\Vert \\ &\qquad{} +\vert \lambda_{n}-\lambda_{n+1}\vert \Vert Bw_{n}\Vert \\ &\quad\leq\frac{1}{N_{1}}\sum_{i=1}^{N_{1}} \Vert u_{i,n+1}-u_{i,n}\Vert +\vert \lambda _{n}- \lambda_{n+1}\vert \Vert Bw_{n}\Vert , \end{aligned} $$
(3.5)
where \(w_{n}=\frac{1}{N_{1}}\sum_{i=1}^{N_{1}}u_{i,n}\). Let \(M_{1}= \sup_{n\in\mathbb{N}}\Vert Bw_{n}\Vert \). By (3.1), (3.4), and (3.5), we have
$$ \begin{aligned}[b] \Vert y_{n+1}-y_{n}\Vert &= \Biggl\Vert P_{C}(I-\lambda_{n+1}B)\frac{1}{N_{1}}\sum _{i=1}^{N_{1}}u_{i,n+1}-P_{C}(I- \lambda_{n}B)\frac{1}{N_{1}}\sum_{i=1}^{N_{1}}u_{i,n} \Biggr\Vert \\ &\leq \Biggl\Vert (I-\lambda_{n+1}B)\frac{1}{N_{1}}\sum _{i=1}^{N_{1}}u_{i,n+1}-(I-\lambda_{n}B) \frac{1}{N_{1}}\sum_{i=1}^{N_{1}}u_{i,n} \Biggr\Vert \\ &\leq\frac{1}{N_{1}}\sum_{i=1}^{N_{1}} \Vert u_{i,n+1}-u_{i,n}\Vert +\vert \lambda _{n}- \lambda_{n+1}\vert \Vert Bw_{n}\Vert \\ &\leq \Vert x_{n+1}-x_{n}\Vert +\frac{1}{N_{1}}\sum _{i=1}^{N_{1}}\eta _{i,n+1}+\vert \lambda_{n}-\lambda_{n+1}\vert M_{1}. \end{aligned} $$
(3.6)
Since \(\{\alpha_{n}\}\) is strictly decreasing, by using (3.6), we have
$$\begin{aligned} &\Vert x_{n+1}-x_{n}\Vert \\ &\quad=\Biggl\Vert (\alpha_{n}-\alpha_{n-1})v+\sum _{i=1}^{n-1}(\alpha_{i-1}-\alpha _{i}) (S_{i}y_{n}-S_{i}y_{n-1}) +(\alpha_{n-1}-\alpha_{n})S_{n}y_{n}\Biggr\Vert \\ &\quad\leq( \alpha_{n-1}-\alpha_{n} )\Vert v\Vert +\sum _{i=1}^{n-1}(\alpha _{i-1}- \alpha_{i})\Vert S_{i}y_{n}-S_{i}y_{n-1} \Vert +(\alpha_{n-1}-\alpha_{n})\Vert S_{n}y_{n} \Vert \\ &\quad\leq( \alpha_{n-1}-\alpha_{n} )\Vert v\Vert +\sum _{i=1}^{n-1}(\alpha _{i-1}- \alpha_{i})\Vert y_{n}- y_{n-1}\Vert +( \alpha_{n-1}-\alpha_{n})\Vert S_{n}y_{n} \Vert \\ &\quad= (\alpha_{n-1}-\alpha_{n})\Vert v\Vert + (1- \alpha_{n-1})\Vert y_{n}- y_{n-1}\Vert +( \alpha_{n-1}-\alpha_{n})\Vert S_{n}y_{n} \Vert \\ &\quad\leq(1-\alpha_{n-1})\Vert x_{n}-x_{n-1}\Vert + \frac{1}{N_{1}}\sum_{i=1}^{N_{1}}\eta _{i,n}+\vert \lambda_{n-1}-\lambda_{n}\vert M_{1}+(\alpha_{n-1}-\alpha_{n})M_{2}, \end{aligned} $$
where \(M_{2}=\sup\{\Vert S_{n}y_{n}\Vert +\Vert v\Vert :n\in\mathbb{N}\}\). By (i) and (ii) and Lemma 2.6, we conclude that
$$ \lim_{n\to\infty} \Vert x_{n+1}-x_{n}\Vert =0. $$
(3.7)
Further, by (3.4) and (3.6), we have
$$ \lim_{n\to\infty} \Vert y_{n+1}-y_{n}\Vert =0,\qquad \lim_{n\to\infty} \Vert u_{i,n+1}-u_{i,n}\Vert =0, \quad i \in\{1,\ldots,N_{1}\}. $$
(3.8)
Step 3. \(\lim_{n\to\infty} \Vert S_{i}x_{n}-x_{n}\Vert \to0\) for each \(i\in \mathbb{N}\).
First, we show that \(\lim_{n\to\infty} \Vert u_{i,n}-x_{n}\Vert =0\) for each \(i\in \{1,\ldots,N_{1}\}\). Since each \(A_{i}^{*}(I-T_{r_{n}}^{F_{i}})A_{i}\) is \(\frac{1}{ 2L_{i}^{2}}\)-inverse strongly monotone, by (3.1), we have
$$\begin{aligned} \Vert u_{i,n}-p\Vert ^{2} =&\bigl\Vert T_{r_{n}}^{F}\bigl(I-\gamma A_{i}^{*} \bigl(I-T_{r_{n}}^{F_{i}}\bigr)A_{i}\bigr)x_{n}-T_{r_{n}}^{F} \bigl(I-\gamma A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i}\bigr)p\bigr\Vert ^{2} \\ \leq&\bigl\Vert \bigl(I-\gamma A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i}\bigr)x_{n}-\bigl(I-\gamma A_{i}^{*} \bigl(I-T_{r_{n}}^{F_{i}}\bigr)A_{i}\bigr)p\bigr\Vert ^{2} \\ =&\bigl\Vert (x_{n}-p)-\gamma\bigl(A_{i}^{*} \bigl(I-T_{r_{n}}^{F_{i}}\bigr)A_{i} x_{n}-A_{i}^{*} \bigl(I-T_{r_{n}}^{F_{i}}\bigr)A_{i} p\bigr)\bigr\Vert ^{2} \\ =&\Vert x_{n}-p\Vert ^{2}-2\gamma\bigl\langle x_{n}-p, A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i} x_{n}-A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A _{i}p\bigr\rangle \\ &{}+\gamma^{2}\bigl\Vert A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i} x_{n}-A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i} p\bigr\Vert ^{2} \\ \leq&\Vert x_{n}-p\Vert ^{2}- \frac{ \gamma}{L_{i}^{2}}\bigl\Vert A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i} x_{n}-A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i} p\bigr\Vert ^{2} \\ &{}+\gamma^{2}\bigl\Vert A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i} x_{n}-A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i} p\bigr\Vert ^{2} \\ =&\Vert x_{n}-p\Vert ^{2}+\gamma\biggl(\gamma- \frac{ 1 }{L_{i}^{2}}\biggr)\bigl\Vert A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i} x_{n}-A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i} p\bigr\Vert ^{2} \\ =&\Vert x_{n}-p\Vert ^{2}+\gamma\biggl(\gamma- \frac{1 }{L_{i}^{2}}\biggr)\bigl\Vert A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i} x_{n} \bigr\Vert ^{2}. \end{aligned}$$
(3.9)
From Lemma 2.4 and (3.9), it follows that
$$\begin{aligned} \Vert x_{n+1}-p\Vert ^{2} =&\Biggl\Vert \alpha_{n}(v-p)+\sum_{i=1}^{n}( \alpha_{i-1}-\alpha _{i}) (S_{i}y_{n}-p) \Biggr\Vert ^{2} \\ \leq&\alpha_{n}\Vert v-p\Vert ^{2}+\sum _{i=1}^{n}(\alpha_{i-1}-\alpha_{i}) \Vert S_{i}y_{n}-p\Vert ^{2} \\ \leq&\alpha_{n}\Vert v-p\Vert ^{2}+\sum _{i=1}^{n}(\alpha_{i-1}-\alpha_{i}) \Vert y_{n}-p\Vert ^{2} \\ =&\alpha_{n}\Vert v-p\Vert ^{2}+ (1- \alpha_{n})\Vert y_{n}-p\Vert ^{2} \\ \leq&\alpha_{n}\Vert v-p\Vert ^{2}+(1- \alpha_{n})\sum_{i=1}^{N_{1}} \frac{1}{N_{1}}\Vert u_{i,n}-p\Vert ^{2} \\ \leq&\alpha_{n}\Vert v-p\Vert ^{2}\\ &{}+ (1- \alpha_{n})\sum_{i=1}^{N_{1}} \frac{1}{N_{1}}\biggl[\Vert x_{n}-p\Vert ^{2} +\gamma\biggl(\gamma-\frac{1 }{L_{i}^{2}}\biggr)\bigl\Vert A_{i}^{*} \bigl(I-T_{r_{n}}^{F_{i}}\bigr)A_{i} x_{n} \bigr\Vert ^{2}\biggr] \\ =&\alpha_{n}\Vert v-p\Vert ^{2}+(1-\alpha_{n}) \Vert x_{n}-p\Vert ^{2} \\ &{}+ (1-\alpha_{n})\sum_{i=1}^{N_{1}} \frac{1}{N_{1}}\gamma\biggl(\gamma-\frac{1 }{L_{i}^{2}}\biggr)\bigl\Vert A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}}\bigr)A_{i} x_{n} \bigr\Vert ^{2} \\ \leq& \alpha_{n}\Vert v-p\Vert ^{2}+ \Vert x_{n}-p\Vert ^{2} \\ &{}+ (1-\alpha_{n})\sum_{i=1}^{N_{1}} \frac{1}{N_{1}}\gamma\biggl(\gamma-\frac{1 }{L_{i}^{2}}\biggr)\bigl\Vert A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}}\bigr)A_{i} x_{n} \bigr\Vert ^{2}. \end{aligned}$$
Since \(\gamma<\frac{1}{L^{2}}=\max\{\frac{1}{L_{1}^{2}},\ldots, \frac {1}{L_{N_{1}}^{2}}\}\), we have
$$\begin{aligned} &(1-\alpha_{n})\frac{1}{N_{1}}\gamma \biggl( \frac{1 }{L_{i}^{2}}-\gamma \biggr)\bigl\Vert A_{i}^{*} \bigl(I-T_{r_{n}}^{F_{i}}\bigr)A_{i} x_{n} \bigr\Vert ^{2} \\ &\quad \leq(1-\alpha_{n})\sum_{i=1}^{N_{1}} \frac{1}{N_{1}}\gamma \biggl( \frac{1 }{L_{i}^{2}}-\gamma \biggr)\bigl\Vert A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}}\bigr)A_{i} x_{n} \bigr\Vert ^{2} \\ &\quad \leq\alpha_{n}\Vert v-p\Vert ^{2}+\Vert x_{n}-p\Vert ^{2}-\Vert x_{n+1}-p\Vert ^{2} \\ &\quad \leq\alpha_{n}\Vert v-p\Vert ^{2}+\Vert x_{n}-x_{n+1}\Vert \bigl(\Vert x_{n}-p\Vert + \Vert x_{n+1}-p\Vert \bigr). \end{aligned} $$
Since \(\alpha_{n}\to0\), by (3.7), we have
$$ \lim_{n\to\infty}\bigl\Vert A_{i}^{*}\bigl(I-T_{r_{n}}^{F_{i}} \bigr)A _{i}x_{n} \bigr\Vert =0 $$
(3.10)
for each \(i\in\{1,\ldots, N_{1}\}\), which implies that
$$ \lim_{n\to\infty}\bigl\Vert \bigl(I-T_{r_{n}}^{F_{i}} \bigr)A_{i} x_{n} \bigr\Vert =0 $$
(3.11)
for each \(i\in\{1,\ldots, N_{1}\}\). Since \(T_{r_{n}}^{F }\) is firmly nonexpansive and \(I-\gamma A_{i} ^{*}(I-T_{r_{n}}^{F_{i}})A_{i} \) is nonexpansive, by (3.1), we have
$$\begin{aligned} \Vert u_{i,n}-p \Vert ^{2} =& \bigl\Vert T_{r_{n}}^{F } \bigl(x_{n}+\gamma A_{i} ^{*}\bigl(T_{r_{n}}^{F_{i}}-I\bigr)A_{i} x_{n} \bigr)-T_{r_{n}}^{F }(p) \bigr\Vert ^{2} \\ \leq& \bigl\langle u_{i,n}-p,x_{n}+\gamma A _{i}^{*}\bigl(T_{r_{n}}^{i}-I\bigr)A_{i} x_{n}-p \bigr\rangle \\ =&\frac{1}{2} \bigl\{ \Vert u_{i,n}-p \Vert ^{2}+ \bigl\Vert x_{n}+\gamma A _{i} ^{*} \bigl(T_{r_{n}}^{F_{i}}-I\bigr)A _{i}x_{n}-p \bigr\Vert ^{2} \\ &{}- \bigl\Vert u_{i,n}-p-\bigl[x_{n}+\gamma A _{i}^{*}\bigl(T_{r_{n}}^{F_{i}}-I\bigr)A_{i} x_{n}-p\bigr] \bigr\Vert ^{2} \bigr\} \\ =&\frac{1}{2} \bigl\{ \Vert u_{i,n}-p \Vert ^{2}+ \bigl\Vert \bigl(I-\gamma A_{i} ^{*} \bigl(I-T_{r_{n}}^{F_{i}}\bigr)A_{i}\bigr) x_{n}-\bigl(I-\gamma A _{i} ^{*}\bigl(I-T_{r_{n}}^{F_{2}} \bigr)A_{i}\bigr)p \bigr\Vert ^{2} \\ &{}- \bigl\Vert u_{i,n}-x_{n}-\gamma A _{i}^{*} \bigl(T_{r_{n}}^{F_{i}}-I\bigr)A _{i}x_{n} \bigr\Vert ^{2} \bigr\} \\ \leq&\frac{1}{2} \bigl\{ \Vert u_{i,n}-p \Vert ^{2}+ \Vert x_{n}-p \Vert ^{2} - \bigl\Vert u_{i,n}-x_{n}-\gamma A _{i}^{*}\bigl(T_{r_{n}}^{F_{i}}-I \bigr)A_{i} x_{n} \bigr\Vert ^{2} \bigr\} \\ =&\frac{1}{2} \bigl\{ \Vert u_{i,n}-p \Vert ^{2}+ \Vert x_{n}-p \Vert ^{2}- \bigl[ \Vert u_{i,n}-x_{n} \Vert ^{2}+\gamma^{2} \bigl\Vert A_{i} ^{*}\bigl(T_{r_{n}}^{F_{i}}-I \bigr)A_{i} x_{n} \bigr\Vert ^{2} \\ &{} -2\gamma\bigl\langle u_{i,n}-x_{n},A_{i} ^{*} \bigl(T_{r_{n}}^{F_{i}}-I\bigr)A_{i} x_{n}\bigr\rangle \bigr] \bigr\} , \end{aligned}$$
which implies that
$$ \Vert u_{i,n}-p \Vert ^{2}\leq \Vert x_{n}-p \Vert ^{2}- \Vert u_{i,n}-x_{n} \Vert ^{2}+2\gamma \Vert u_{i,n}-x_{n} \Vert \bigl\Vert A_{i}^{*}\bigl(T_{r_{n}}^{F_{i}}-I \bigr)A_{i} x_{n}\bigr\Vert . $$
(3.12)
Now, from (3.1) and (3.12), it follows that
$$\begin{aligned} \Vert x_{n+1}-p\Vert ^{2} \leq& \alpha_{n}\Vert v-p\Vert ^{2}+ (1-\alpha_{n}) \Vert y_{n}-p\Vert ^{2} \\ \leq&\alpha_{n}\Vert v-p\Vert ^{2}+(1- \alpha_{n})\sum_{i=1}^{N_{1}} \frac{1}{N_{1}}\Vert u_{i,n}-p\Vert ^{2} \\ \leq&\alpha_{n}\Vert v-p\Vert ^{2}+ (1- \alpha_{n})\sum_{i=1}^{N_{1}} \frac{1}{N_{1}} \bigl(\Vert x_{n}-p \Vert ^{2}- \Vert u_{i,n}-x_{n} \Vert ^{2} \\ &{}+2\gamma \Vert u_{i,n}-x_{n} \Vert \bigl\Vert A_{i}^{*}\bigl(T_{r_{n}}^{F_{i}}-I\bigr)A_{i} x_{n}\bigr\Vert \bigr) \\ \leq&\alpha_{n}\Vert v-p\Vert ^{2}+ \Vert x_{n}-p \Vert ^{2}- (1-\alpha_{n})\sum _{i=1}^{N_{1}}\frac {1}{N_{1}}\Vert u_{i,n}-x_{n} \Vert ^{2} \\ &{}+2\gamma\sum_{i=1}^{N_{1}}\frac{1}{N_{1}} \Vert u_{i,n}-x_{n} \Vert \bigl\Vert A_{i}^{*} \bigl(T_{r_{n}}^{F_{i}}-I\bigr)A_{i} x_{n}\bigr\Vert , \end{aligned}$$
and so
$$\begin{aligned} (1-\alpha_{n})\frac{1}{N_{1}} \Vert u_{i,n}-x_{n} \Vert ^{2} \leq&(1-\alpha_{n})\sum _{i=1}^{N_{1}}\frac{1}{N_{1}} \Vert u_{i,n}-x_{n}\Vert ^{2} \\ \leq&\alpha_{n}\Vert v-p\Vert ^{2}+ \Vert x_{n}-x_{n+1}\Vert \bigl(\Vert x_{n}-p\Vert + \Vert x_{n+1}-p\Vert \bigr) \\ &{}+ 2\gamma\sum_{i=1}^{N_{1}}\frac{1}{N_{1}} \bigl(\Vert u_{i,n}\Vert +\Vert x_{n} \Vert \bigr)\bigl\Vert A_{i}^{*}\bigl(T_{r_{n}}^{F_{i}}-I \bigr)A_{i} x_{n}\bigr\Vert ). \end{aligned}$$
Since \(\alpha_{n}\to0\), both \(\{u_{i,n}\}\) and \(\{x_{n}\}\) are bounded, by (3.7) and (3.10), we have
$$ \lim_{n\to\infty} \Vert u_{i,n}-x_{n}\Vert =0 $$
(3.13)
for each \(i\in\{1,\ldots,N_{1}\}\).
Next, we show that \(\lim_{n\to\infty} \Vert y_{n}-u_{n}\Vert =0\), where \(u_{n}=\frac {1}{N_{1}}\sum_{i=1}^{N_{1}}u_{i,n}\). Note that \(p={P_{C} (I-\lambda_{n}B)p}\). By (3.1), we have
$$\begin{aligned} \Vert x_{n+1}-p\Vert ^{2} \leq& \alpha_{n}\Vert v-p\Vert ^{2}+ (1-\alpha_{n}) \Vert y_{n}-p\Vert ^{2} \\ \leq&\alpha_{n}\Vert v-p\Vert ^{2}+(1- \alpha_{n}) \bigl\Vert u_{n}-p-\lambda_{n}(Bu_{n}-Bp) \bigr\Vert ^{2} \\ =&\alpha_{n}\Vert v-p\Vert ^{2}\\ &{}+(1-\alpha_{n}) \bigl(\Vert u_{n}-p\Vert ^{2} -2\lambda_{n}\langle u_{n}-p, Bu_{n}-Bp \rangle+ \lambda_{n}^{2}\Vert Bu_{n}-Bp\Vert ^{2}\bigr) \\ \leq&\alpha_{n}\Vert v-p\Vert ^{2}\\ &{}+(1- \alpha_{n}) \bigl(\Vert u_{n}-p\Vert ^{2} -2\lambda_{n}\beta \Vert Bu_{n}-Bp \Vert ^{2}+ \lambda_{n}^{2}\Vert Bu_{n}-Bp\Vert ^{2}\bigr) \\ \leq&\alpha_{n}\Vert v-p\Vert ^{2}\\ &{}+(1- \alpha_{n}) \bigl(\Vert x_{n}-p\Vert ^{2} -2\lambda_{n}\beta \Vert Bu_{n}-Bp \Vert ^{2}+ \lambda_{n}^{2}\Vert Bu_{n}-Bp\Vert ^{2}\bigr) \\ =&\alpha_{n}\Vert v-p\Vert ^{2}+(1-\alpha_{n}) \Vert x_{n}-p\Vert ^{2} \\ &{} +(1-\alpha_{n}) \lambda_{n}( \lambda_{n}-2\beta) \Vert Bu_{n}-Bp \Vert ^{2} \end{aligned}$$
and so
$$\begin{aligned} &(1-\alpha_{n}) \lambda_{n}( 2\beta- \lambda_{n})\Vert Bu_{n}-Bp \Vert ^{2} \\ &\quad \leq\alpha_{n}\Vert v-p\Vert ^{2}+ \Vert x_{n}-x_{n+1}\Vert \bigl(\Vert x_{n}-p\Vert + \Vert x_{n+1}-p\Vert \bigr). \end{aligned} $$
Since \(\alpha_{n}\to0\) and \(0<\lim_{n\to\infty} \lambda_{n}=\lambda<2\beta \), by (3.7), we have
$$ \lim_{n\to\infty} \Vert Bu_{n}-Bp \Vert =0. $$
(3.14)
Since \(P_{C}\) is firmly nonexpansive and \((I-\lambda_{n} B)\) is nonexpansive, by (3.1), we have
$$\begin{aligned} \Vert y_{n}-p\Vert ^{2} ={}&\bigl\Vert P_{C}(u_{n}-\lambda_{n}Bu_{n})-P_{C}(p- \lambda_{n}Bp)\bigr\Vert ^{2} \\ \leq{}&\bigl\langle y_{n}-p,u_{n}-\lambda_{n}Bu_{n}-(p- \lambda_{n}Bp)\bigr\rangle \\ ={}& \frac{1}{2} \bigl(\Vert y_{n}-p\Vert ^{2}+ \bigl\Vert (I-\lambda_{n} B)u_{n}-(I-\lambda_{n} B)p\bigr\Vert ^{2} -\bigl\Vert y_{n}-u_{n}+ \lambda_{n}(Bu_{n}-Bp)\bigr\Vert ^{2} \bigr) \\ \leq{}& \frac{1}{2} \bigl(\Vert y_{n}-p\Vert ^{2}+ \Vert u_{n}- p\Vert ^{2} -\bigl\Vert y_{n}-u_{n}+\lambda _{n}(Bu_{n}-Bp)\bigr\Vert ^{2} \bigr) \\ ={}&\frac{1}{2} \bigl(\Vert y_{n}-p\Vert ^{2}+ \Vert u_{n}- p\Vert ^{2} -\Vert y_{n}-u_{n} \Vert ^{2}-\lambda_{n}^{2}\Vert Bu_{n}-Bp\Vert ^{2} \\ & {}-2\lambda_{n}\langle y_{n}-u_{n},Bu_{n}-Bp \rangle \bigr) \\ \leq{}&\frac{1}{2} \bigl(\Vert y_{n}-p\Vert ^{2}+ \Vert u_{n}- p\Vert ^{2} -\Vert y_{n}-u_{n} \Vert ^{2}-\lambda _{n}^{2}\Vert Bu_{n}-Bp\Vert ^{2} \\ & {}+2\lambda_{n}\Vert y_{n}-u_{n}\Vert \Vert Bu_{n}-Bp\Vert \bigr) \end{aligned}$$
and so
$$ \begin{aligned}[b] \Vert y_{n}-p\Vert ^{2}\leq{}&\Vert u_{n}- p\Vert ^{2} -\Vert y_{n}-u_{n} \Vert ^{2}-\lambda_{n}^{2}\Vert Bu_{n}-Bp\Vert ^{2} \\ &{}+2\lambda_{n}\Vert y_{n}-u_{n}\Vert \Vert Bu_{n}-Bp\Vert \\ \leq{}&\Vert x_{n}- p\Vert ^{2} -\Vert y_{n}-u_{n}\Vert ^{2} +2\lambda_{n} \Vert y_{n}-u_{n}\Vert \Vert Bu_{n}-Bp\Vert . \end{aligned} $$
(3.15)
From (3.1) and (3.15), we have
$$\begin{aligned} \Vert x_{n+1}-p\Vert ^{2}\leq{}& \alpha_{n}\Vert v-p\Vert ^{2}+ (1-\alpha_{n}) \Vert y_{n}-p\Vert ^{2} \\ \leq{}&\alpha_{n}\Vert v-p\Vert ^{2}\\ &{}+ (1- \alpha_{n}) \bigl( \Vert x_{n}- p\Vert ^{2} - \Vert y_{n}-u_{n}\Vert ^{2} +2\lambda_{n}\Vert y_{n}-u_{n}\Vert \Vert Bu_{n}-Bp\Vert \bigr) \\ \leq{}&\alpha_{n}\Vert v-p\Vert ^{2}+\Vert x_{n}-p\Vert ^{2}- (1-\alpha_{n})\Vert y_{n}-u_{n}\Vert ^{2} \\ &{}+2 (1-\alpha_{n})\lambda_{n}\Vert y_{n}-u_{n} \Vert \Vert Bu_{n}-Bp\Vert . \end{aligned} $$
Therefore, we have
$$\begin{aligned} (1-\alpha_{n})\Vert y_{n}-u_{n}\Vert ^{2}\leq {}&\alpha_{n}\Vert v-p\Vert ^{2}+\Vert x_{n}-x_{n+1}\Vert \bigl(\Vert x_{n+1}-p\Vert + \Vert x_{n}-p\Vert \bigr) \\ &{}+2 (1-\alpha_{n})\lambda_{n}\bigl(\Vert y_{n} \Vert +\Vert u_{n}\Vert \bigr)\Vert Bu_{n}-Bp\Vert . \end{aligned} $$
Since \(\lim_{n\to\infty}\alpha_{n}=0\) and both \(\{y_{n}\}\) and \(\{u_{n}\}\) are bounded, by (3.7) and (3.14), we have
$$ \lim_{n\to\infty} \Vert y_{n}-u_{n}\Vert =0. $$
(3.16)
Further, from (3.7), (3.13), (3.16), and
$$\begin{aligned} \Vert x_{n+1}-y_{n}\Vert &\leq \Vert x_{n+1}-x_{n}\Vert +\Vert x_{n}-u_{n} \Vert +\Vert u_{n}-y_{n}\Vert \\ &\leq \Vert x_{n+1}-x_{n}\Vert +\sum _{i=1}^{N_{1}}\frac{1}{N_{1}}\Vert x_{n}-u_{i,n}\Vert +\Vert u_{n}-y_{n} \Vert , \end{aligned} $$
it follows that
$$ \lim_{n\to\infty} \Vert x_{n+1}-y_{n}\Vert =0. $$
(3.17)
Now, from (3.1), it follows that
$$ \sum_{i=1}^{n}(\alpha_{i-1}- \alpha_{i}) (S_{i}y_{n}-y_{n})=x_{n+1}-y_{n}- \alpha _{n}(v-y_{n}). $$
(3.18)
Since \(\{\alpha_{n}\}\) is strictly decreasing, for each \(i\in\mathbb{N}\), by (2.1) and (3.18), we have
$$\begin{aligned} (\alpha_{i-1}-\alpha_{i})\Vert S_{i}y_{n}-y_{n}\Vert ^{2}&\leq\sum _{i=1}^{n}(\alpha _{i-1}- \alpha_{i})\Vert S_{i}y_{n}-y_{n} \Vert ^{2} \\ &\leq2\sum_{i=1}^{n}(\alpha_{i-1}- \alpha_{i})\langle S_{i}y_{n}-y_{n}, p-y_{n}\rangle \\ &=2\langle x_{n+1}-y_{n},y_{n}-p\rangle-2 \alpha_{n}\langle v-y_{n},p-y_{n} \rangle \\ &\leq2\Vert x_{n+1}-y_{n}\Vert \Vert y_{n}-p \Vert +2\alpha_{n}\Vert v-y_{n}\Vert \Vert y_{n}-p \Vert . \end{aligned}$$
Since \(\lim_{n\to\infty}\alpha_{n}=0\) and \(\{y_{n}\}\) is bounded, by (3.17), one has
$$ \lim_{n\to\infty} \Vert S_{i}y_{n}-y_{n} \Vert =0 $$
(3.19)
for all \(i\in\mathbb{N}\). Further, since
$$\begin{aligned} \Vert S_{i}x_{n}-x_{n}\Vert &\leq \Vert S_{i}x_{n}-S_{i}y_{n}\Vert + \Vert S_{i}y_{n}-y_{n}\Vert +\Vert y_{n}-x_{n}\Vert \\ &\leq2\Vert y_{n}-x_{n}\Vert +\Vert S_{i}y_{n}-y_{n}\Vert \\ &\leq2\Vert y_{n}-x_{n+1}\Vert +2\Vert x_{n+1}-x_{n}\Vert +\Vert S_{i}y_{n}-y_{n} \Vert , \end{aligned} $$
by (3.7), (3.17), and (3.19), we obtain
$$ \lim_{n\to\infty} \Vert S_{i}x_{n}-x_{n} \Vert =0 $$
(3.20)
for all \(i\in\mathbb{N}\).
Step 4. \(\limsup_{n\to\infty}\langle v-z,x_{n}-z\rangle\leq0\).
Let \(z=P_{\Theta}v\). Since \(\{x_{n}\}\) is bounded, we can choose a subsequence \(\{x_{n_{j}}\}\) of \(\{x_{n}\}\) such that
$$\limsup_{n\to\infty}\langle v-z,x_{n}-z\rangle=\lim _{j\to\infty}\langle v-z,x_{n_{j}}-z \rangle. $$
Since \(\{x_{n_{j}}\}\) is bounded, there exists a subsequence \(\{ x_{n_{j_{i}}}\}\) of \(\{x_{n_{j}}\}\) converging weakly to a point \(w\in C\). Without loss of generality, we can assume that \(x_{n_{j}}\rightharpoonup w\).
Now, we show that \(w\in\Theta\). First of all, we prove that \(w\in \Gamma=\bigcap_{i=1}^{\infty} \operatorname {Fix}(S_{i})\). In fact, since \(x_{n}-S_{i}x_{n}\to0\) for each \(i\in\mathbb{N}\) and \(x_{n_{j}}\rightharpoonup w\), by Lemma 2.5, we obtain \(w\in\bigcap_{i=1}^{\infty} \operatorname {Fix}(S_{i})=\Gamma\).
Next, we show that \(w\in\Omega\), i.e., \(w\in \operatorname {EP}(F )\) and \(A_{i}w\in \operatorname {EP}(F_{i})\) for each \(i=1,\ldots, N_{1}\).
Let \(w_{i,n}=(I-A_{i}^{*}(I-T_{r_{n}}^{F_{i}}))A_{i}x_{n}\) for each \(i=1,\ldots, N_{1}\). By (3.10) and (3.13) we see that \(w_{i,n}-x_{n}\to0\) and \(T_{r_{n}}^{F}w_{i,n}-w_{i,n}\to0\) as \(n\to\infty\). By Lemma 2.2 we see that \(\Vert T_{r_{n}}^{F}w_{i,n}-T_{r}^{F}w_{i,n}\Vert \leq \vert 1-\frac{r}{r_{n}}\vert \Vert T_{r_{n}}^{F}w_{i,n}-w_{i,n}\Vert \to0\) as \(n\to\infty\). Hence \(T_{r}^{F}w_{i,n}-w_{i,n}\to0\) as \(n\to\infty\) for each \(i=1,\ldots,N_{1}\). Since \(T_{r}^{F}\) is non-expansive and \(\{w_{i,n}\}\) converges weakly to w, by Lemma 2.5 we get \(w=T_{r}^{F} w\), i.e., \(w\in \operatorname {EP}(F)\). On the other hand, since \((I-\gamma A^{*}_{i}(I-T_{r_{n}}^{F_{i}})A_{i} )x_{n}-x_{n}\to0 \) (by (3.13)) and \(I-\gamma A^{*}_{i}(I-T_{r_{n}}^{F_{i}})A_{i} \) is non-expansive, from Lemmas 2.2 and 2.5 it follows that \(w=(I-\gamma A^{*}_{i}(I-T_{r}^{F_{i}})A_{i} )w\), i.e., \(w=T_{r}^{F} A_{i}w\). Therefore, \(w\in\Omega\).
Finally, we prove that \(w\in \operatorname {VI}=\bigcap_{i=1}^{N_{2}} \operatorname {VI}(C,B_{i})\) by demiclosedness principle. Obviously, we only need to show that \(w=P_{C}(w-\lambda B_{i}w)\), where \(\lambda=\lim_{n\to\infty}\lambda_{n}\). By (3.1) and (3.16), one has \(\Vert u_{n}-P_{C}(I-\lambda_{n} B)u_{n}\Vert \to0\), where \(u_{n}=\frac{1}{N_{1}}\sum_{i=1}^{N_{1}}u_{i,n}\). Then we have
$$\begin{aligned} \bigl\Vert u_{n}-P_{C}(I-\lambda B)u_{n}\bigr\Vert &\leq\bigl\Vert u_{n}-P_{C}(I- \lambda_{n} B)u_{n}\bigr\Vert +\bigl\Vert P_{C}(I-\lambda_{n} B)u_{n}-P_{C}(I- \lambda B)u_{n}\bigr\Vert \\ &\leq\bigl\Vert u_{n}-P_{C}(I-\lambda_{n} B)u_{n}\bigr\Vert +\bigl\Vert (I-\lambda_{n} B)u_{n}- (I-\lambda B)u_{n}\bigr\Vert \\ &\leq\bigl\Vert u_{n}-P_{C}(I-\lambda_{n} B)u_{n}\bigr\Vert + \vert \lambda-\lambda_{n}\vert \Vert Bu_{n}\Vert . \end{aligned} $$
Since \(\lambda_{n}\to\lambda>0\), \(\{Bu_{n}\}\) is bounded and \(\Vert u_{n}-P_{C}(I-\lambda B)u_{n}\Vert \to0\), we have
$$\lim_{n\to\infty}\bigl\Vert u_{n}-P_{C}(I- \lambda B)u_{n}\bigr\Vert =0. $$
On the other hand, since \(\{\lambda_{n}\}\subset(0,2\beta)\), one has \(\lambda\in(0,2\beta]\). Thus \(I-\lambda B\) is nonexpansive and, further, \(P_{C}(I-\lambda B)\) is nonexpansive. Noting that \(u_{n_{j}}\rightharpoonup w\) as \(j\to\infty\), by Lemma 2.5, we obtain \(w=P_{C}(I-\lambda B)w\). By Lemma 2.8, we get \(w\in \operatorname {VI}=\bigcap_{i=1}^{N_{2}}\operatorname {VI}(C,B_{i})\). Therefore, \(w\in\Theta\). By the property on \(P_{C}\), we have
$$ \limsup_{n\to\infty}\langle v-z,x_{n}-z\rangle=\lim _{j\to\infty}\langle v-z,x_{n_{j}}-z\rangle=\langle v-z,w-z \rangle\leq0. $$
(3.21)
Step 5. \(x_{n}\to z=P_{\Theta}v \) as \(n\to\infty\).
By (3.1), we have
$$\begin{aligned} \Vert x_{n+1}-z\Vert ^{2}&=\Biggl\Vert \alpha_{n} v+\sum_{i=1}^{n}( \alpha_{i-1}-\alpha _{i})S_{i}y_{n}-z \Biggr\Vert ^{2} \\ &=\alpha_{n}\langle v-z,x_{n+1}-z\rangle+ \sum _{i=1}^{n}(\alpha_{i-1}-\alpha _{i})\langle S_{i}y_{n}-z,x_{n+1}-z \rangle \\ &\leq\alpha_{n}\langle v-z,x_{n+1}-z\rangle+ \frac{\sum_{i=1}^{n}(\alpha _{i-1}-\alpha_{i})}{2}\bigl(\Vert S_{i}y_{n}-z\Vert ^{2}+\Vert x_{n+1}-z\Vert ^{2}\bigr) \\ &\leq \alpha_{n}\langle v-z,x_{n+1}-z\rangle+ \frac{\sum_{i=1}^{n}(\alpha _{i-1}-\alpha_{i})}{2}\bigl(\Vert x_{n}-z\Vert ^{2}+\Vert x_{n+1}-z\Vert ^{2}\bigr) \\ &= \alpha_{n}\langle v-z,x_{n+1}-z\rangle+\frac{1-\alpha_{n} }{2} \bigl( \Vert x_{n}-z\Vert ^{2}+\Vert x_{n+1}-z \Vert ^{2}\bigr) \\ &\leq\alpha_{n}\langle v-z,x_{n+1}-z\rangle+ \frac{1-\alpha_{n} }{2} \Vert x_{n}-z\Vert ^{2}+ \frac{1 }{2}\Vert x_{n+1}-z\Vert ^{2}, \end{aligned} $$
which implies that
$$\Vert x_{n+1}-z\Vert ^{2}\leq(1-\alpha_{n}) \Vert x_{n}-z\Vert ^{2}+2\alpha_{n}\langle v-z,x_{n+1}-z\rangle. $$
By Lemma 2.6 and (3.21), we can conclude that \(\lim_{n\to\infty} \Vert x_{n}-z\Vert =0\). This completes the proof. □
The following results follow directly from Theorem 3.1.
Corollary 3.2
Let
\(H_{1}\), \(H_{2}\)
be two real Hilbert spaces and
\(C\subset H_{1}\), \(Q\subset H_{2}\)
be nonempty closed convex subsets. Let
\(A: H_{1}\to H_{2}\)
be a bounded linear operator and
\(B: C\to H_{1}\)
be a
β-inverse strongly monotone operator. Assume that
\(F :C\times C\to\mathbb{R}\), \(F_{1}: Q\times Q\to\mathbb{R} \)
are bifunctions satisfying the conditions (A1)-(A4). Let
\(\{S_{n}\}\)
be countable family of nonexpansive mappings from
C
into
C. Assume that
\(\Theta =\Gamma\cap\Omega\cap \operatorname {VI}(C,B)\neq\emptyset\), where
\(\Gamma=\bigcap_{n=1}^{\infty} \operatorname {Fix}(S_{n})\)
and
\(\Omega=\{z\in C: z\in \operatorname {EP}(F)\ \textit{and}\ Az\in \operatorname {EP}(F_{1}) \}\). Take
\(v\in C\)
arbitrarily and define an iterative scheme in the following manner:
$$ \textstyle\begin{cases} u_{n}=T_{r_{n}}^{F}(I-\gamma A^{*}(I-T_{r_{n}}^{F_{1}})A )x_{n},\\ y_{n}=P_{C}(u_{n}-\lambda_{n} Bu_{n}),\\ x_{n+1}=\alpha_{n} v+ \sum_{i=1}^{n}(\alpha_{i-1}-\alpha_{i}) S_{i} y_{n}, \end{cases} $$
(3.22)
for all
\(n\in\mathbb{N}\), where
\(\{r_{n}\}\subset(r,\infty)\)
with
\(r>0\), \(\{\lambda_{n}\}\subset(0,2\beta)\), and
\(\gamma\subset(0,1/L^{2}]\), L
is the spectral radius of the operator
\(A^{*}A\)
and
\(A^{*}\)
is the adjoint of
A, \(\alpha_{0}=1\), and
\(\{\alpha_{n}\}\subset(0,1)\)
is a strictly decreasing sequence. Assume that the control sequences
\(\{\alpha_{n}\}\), \(\{\lambda_{n}\}\), and
\(\{r_{n}\}\)
satisfy the following conditions:
-
(1)
\(\lim_{n\to\infty}\alpha_{n}=0\)
and
\(\sum_{n=1}^{\infty}\alpha _{n}=\infty\);
-
(2)
\(\sum_{n=1}^{\infty} \vert r_{n+1}-r_{n}\vert <\infty\)
and
\(\sum_{n=1}^{\infty} \vert \lambda_{n+1}-\lambda_{n}\vert <\infty\);
-
(3)
\(\lim_{n\to\infty} \lambda_{n}=\lambda\in(0,2\beta)\).
Then the sequence
\(\{x_{n}\}\)
defined by (3.22) converges strongly to a point
\(z=P_{\Theta}v\).
Corollary 3.3
Let
\(H_{1}\), \(H_{2}\)
be two real Hilbert spaces and
\(C\subset H_{1}\), \(Q\subset H_{2}\)
be nonempty closed convex subsets. Let
\(A: H_{1}\to H_{2}\)
be a bounded linear operator and
\(B: C\to H_{1}\)
be a
β-inverse strongly monotone operator. Assume that
\(F :C\times C\to\mathbb{R}\), \(F_{1}: Q\times Q\to\mathbb{R} \)
are the bifunctions satisfying the conditions (A1)-(A4). Let
\(S: C\to C\)
be a nonexpansive mapping. Assume that
\(\Theta=\operatorname {Fix}(S) \cap\Omega\cap \operatorname {VI}(C,B)\neq\emptyset\), where
\(\Omega=\{z\in C: z\in \operatorname {EP}(F)\ \textit{and}\ Az\in \operatorname {EP}(F_{1}) \}\). Take
\(v\in C\)
arbitrarily and define an iterative scheme in the following manner:
$$ \textstyle\begin{cases} u_{n}=T_{r_{n}}^{F}(I-\gamma A^{*}(I-T_{r_{n}}^{F_{1}})A )x_{n},\\ y_{n}=P_{C}(u_{n}-\lambda_{n} Bu_{n}),\\ x_{n+1}=\alpha_{n} v+ (1-\alpha_{n}) S y_{n} \end{cases} $$
(3.23)
for all
\(n\in\mathbb{N}\), where
\(\{r_{n}\}\subset(r,\infty)\)
with
\(r>0\), \(\{\lambda_{n}\}\subset(0,2\beta)\), and
\(\gamma\subset(0,1/L^{2}]\), L
is the spectral radius of the operator
\(A^{*}A\)
and
\(A^{*}\)
is the adjoint of
A, \(\{\alpha_{n}\}\subset(0,1)\)
is a sequence. Assume that the control sequences
\(\{\alpha_{n}\}\), \(\{\lambda_{n}\}\), and
\(\{r_{n}\}\)
satisfy the following conditions:
-
(1)
\(\lim_{n\to\infty}\alpha_{n}=0\)
and
\(\sum_{n=1}^{\infty}\alpha _{n}=\infty\);
-
(2)
\(\sum_{n=1}^{\infty} \vert r_{n+1}-r_{n}\vert <\infty\)
and
\(\sum_{n=1}^{\infty} \vert \lambda_{n+1}-\lambda_{n}\vert <\infty\);
-
(3)
\(\lim_{n\to\infty} \lambda_{n}=\lambda\in(0,2\beta)\).
Then the sequence
\(\{x_{n}\}\)
defined by (3.23) converges strongly to a point
\(z=P_{\Theta}v\).
Remark 3.4
Theorem 3.1 and Corollary 3.3 extend the corresponding one of Kazmi and Rizvi [14] from a nonexpansive mapping to a finite of family of nonexpansive mappings and from a split equilibrium problem to a finite of family of split equilibrium problems. It is a little simple to prove that \(w\in \operatorname {VI}\) by the demiclosedness principle in Theorem 3.1.
We give an example to illustrate Theorem 3.1 as follows.
Example 3.5
Let \(H_{1}=\mathbb{R}\) and \(H_{2}=\mathbb{R}^{2}\), \(C=[0,1]\), and \(Q=[0,1]\times[0,1]\). Let \(A_{1}: H_{1}\to H_{2}\) and \(A_{2}: H_{1}\to H_{2}\) defined by \(A_{1}x=(x,x)^{T}\) and \(A_{2}x=(\frac{x}{2},\frac {x}{2})^{T}\) for each \(x\in H_{1}\). Then \(A_{1}^{*}y=y_{1}+y_{2}\) and \(A_{2}^{*}y=\frac{y_{1}+y_{2}}{2}\) for each \(y=(y_{1},y_{2})^{T}\in H_{2}\). Then \(L_{1}=2\) and \(L_{2}=\frac{1}{2}\), where \(L_{1}\) and \(L_{2}\) are the spectral radius of \(A_{1}^{*}A_{1}\) and \(A_{2}^{*}A_{2}\), respectively.
Let \(B_{1}= 2(x-1)\) and \(B_{2}= -4\) for all \(x\in C\). Then it is easy to see that \(B_{1}\) and \(B_{2}\) are \(\frac{1}{2}\) and 1-inverse strongly monotone operators from C into \(H_{1}\). Find that \(\operatorname {VI}=\operatorname {VI}(C,B_{1})\cap \operatorname {VI}(C,B_{2})=\{1\}\). For each \(n\in\mathbb{N}\), let \(S_{n}:C\to C\) defined by \(S_{n}(x)=x+\frac{1}{3n}\) for each \(x\in[0,\frac{1}{2}]\) and \(S_{n}(x)=x\) for each \(x\in(\frac{1}{2},1]\). Then \(\{S_{n}\}\) is a countable family of nonexpansive mappings from C into C and it is easy to see that \(\Gamma=\bigcap_{n=1}^{\infty} \operatorname {Fix}(S_{n})=(\frac{1}{2},1]\). For each \(x,y\in C\), define the bifunction \(F: C\times C\to\mathbb{R}\) by \(F(x,y)=x-y\) for all \(x,y\in C\). For each \(u=(u_{1},u_{2})^{T}\) and \(v=(v_{1},v_{2})^{T}\in Q\), define \(F_{1}: Q\times Q\to\mathbb{R}\) and \(F_{2}:Q\times Q\to\mathbb{R}\) by
$$F_{1}(u,v)=u_{1}+u_{2}-v_{1}-v_{2} $$
and
$$F_{2}(u,v)= \textstyle\begin{cases} 0, & \mbox{if } u=v,\\ 2 , & \mbox{if } u=(1,1) \mbox{ or } (\frac{1}{2},\frac{1}{2} ) \mbox{ and } v\neq(1,1) \mbox{ or } (\frac{1}{2},\frac{1}{2} ),\\ -2 ,& \mbox{if } v=(1,1) \mbox{ or } (\frac{1}{2},\frac{1}{2} ) \mbox{ and } u\neq(1,1) \mbox{ or } (\frac{1}{2},\frac{1}{2} ),\\ u_{1}^{2}+u_{2}^{2}-v_{1}-v_{2}, & \mbox{otherwise}. \end{cases} $$
It is easy to check that the bifunctions F, \(F_{1}\), and \(F_{2}\) satisfy the conditions (A1)-(A4) and \(F_{1}\). Moreover, \(\Omega=\{1\}\), where \(\Omega=\{z\in C: z\in \operatorname {EP}(F), A_{1}z\in \operatorname {EP}(F_{1}) \mbox{ and } A_{2}z\in \operatorname {EP}(F_{2}) \}\). Therefore, \(\Theta=\Gamma\cap \mathrm{VI}\cap \Omega=\{1\}\).
Let \(\alpha_{0}=1\), \(\gamma_{1}=\gamma_{2}=\frac{1}{2}\), and \(\gamma=\frac {1}{4}\). For each \(n\in\mathbb{N}\), let \(r_{n}= 2\), \(\lambda_{n}=\frac {1}{4}\), \(\alpha_{n}=\frac{1}{n}\). Then the sequences \(\{\alpha_{n}\}\), \(\{ \lambda_{n}\}\), \(\{r_{n}\}\) satisfy the conditions (1)-(3) in Theorem 3.1.
For each \(x\in C\) and each \(n\in\mathbb{N}\), we compute \(T_{r_{n}}^{F_{1}}A_{1}x\), i.e., \(T_{r_{n}}^{F_{1}}(x,x)\). Find \(z=(1,1) \) such that
$$\begin{aligned} F_{1}(z,y)+\frac{1}{r_{n}}\langle y-z,z-A_{1}x \rangle&=2-(y_{1}+y_{2})+ \frac {1}{2} \bigl[(y_{1}-1) (1-x)+(y_{2}-1) (1-x)\bigr] \\ &=2-(y_{1}+y_{2})+ \frac{1}{2}(1-x) ( y_{1} + y_{2}-2) \\ &=\bigl[2-(y_{1}+y_{2})\bigr] \biggl[1- \frac{1}{2}(1-x) \biggr] \\ &\geq0 \end{aligned} $$
for all \(y=(y_{1},y_{2})\in Q\). Thus, from Lemma 2.1(1), it follows that \(T_{r_{n}}^{F_{1}}A_{1}x=(1,1)\) for each \(x\in C\). Similarly, for each \(x\in [0,1]\), we can find \(z=(1,1)\) such that, for \(y=(\frac{1}{2}, \frac{1}{2})\),
$$\begin{aligned} F_{2}(z,y)+\frac{1}{r_{n}}\langle y-z,z-A_{2}x \rangle&=1-\frac {1}{2}(1-x)=\frac{1 }{2}+\frac{x}{4}\geq0; \end{aligned} $$
for \(y=(1, 1)\),
$$F_{2}(z,y)+\frac{1}{r_{n}}\langle y-z,z-A_{2}x\rangle=0; $$
for \(y\in Q\setminus\{(1,1),(\frac{1}{2},\frac{1}{2})\}\),
$$F_{2}(z,y)+\frac{1}{r_{n}}\langle y-z,z-A_{2}x\rangle=2+ \frac{1}{2} \biggl[(y_{1}-1) \biggl(1-\frac{x}{2} \biggr)+(y_{2}-1) \biggl(1-\frac{x}{2} \biggr) \biggr] \geq0. $$
Thus \(z=(1,1)=T_{r_{n}}^{F_{2}}A_{2}x\) for all \(x\in C\) by Lemma 2.1(1).
Now, take \(v=\frac{1}{2}\) and \(x_{1}=\frac{1}{4}\) and define the sequence \(\{x_{n}\}\) defined by (3.1). Since each \(x_{n}\in C\), from the statement above we get \(T_{r_{n}}^{F_{i}}A_{i}x_{n}=(1,1)\) for each \(i=1,2\). Furthermore, we can get
$$\begin{aligned} \bigl(I-\gamma A_{1}^{*}\bigl(I-T_{r_{n}}^{F_{1}} \bigr)A_{1}\bigr) x_{n}&=\bigl(x_{n}-\gamma A_{1}^{*}\bigl(A_{1}x_{n}-T_{r_{n}}^{F_{1}}A_{1}x_{n} \bigr)\bigr) \\ &=\bigl(x_{n}-\gamma A_{1}^{*}\bigl((x_{n},x_{n})-(1,1) \bigr)\bigr) \\ &=x_{n}-2\gamma( x_{n}-1) \\ &=\frac{1+x_{n}}{2}. \end{aligned} $$
Note that
$$\begin{aligned} F(1,y)+\frac{1}{r_{n}} \biggl\langle y-z,z-\frac{1+x_{n}}{2} \biggr\rangle &=1-y+\frac{1}{2}(y-1) \biggl(1-\frac{1+x_{n}}{2} \biggr) \\ &=(1-y) \biggl(1-\frac{1}{2} \biggl(1-\frac{1+x_{n}}{2} \biggr) \biggr) \\ &=(1-y) \biggl( \frac{1}{2}+\frac{1+x_{n}}{4} \biggr) \\ &\geq0 \end{aligned} $$
for all \(y\in C\). Thus \(u_{1,n}=1\) by Lemma 2.1(1) for each \(n\in \mathbb{N}\). Similarly, we can conclude that \(u_{2,n}=1\) for each \(n\in \mathbb{N}\).
Next, we compute the sequence \(\{y_{n}\}\). By the definition of \(\{y_{n}\} \), we see that
$$\begin{aligned} y_{n}&=P_{C} \biggl[ \biggl(I- \lambda_{n}\frac{B_{1}+B_{2}}{2} \biggr)\frac {u_{1,n}+u_{2,n}}{2} \biggr] \\ &= P_{C} \biggl(1+\frac{2}{4} \biggr) =1 \end{aligned} $$
for all \(n\in\mathbb{N}\).
Finally, we compute the sequence \(\{x_{n}\}\) by the following iteration:
$$\begin{aligned} x_{n+1}&=\alpha_{n}v+\sum _{i=1}^{n}(\alpha_{i-1}-\alpha_{i})S_{i}y_{n} \\ &=\alpha_{n}v+1-\alpha_{n} \\ &= 1-\frac{1}{2n} \\ &\to1=P_{\Theta}v=P_{\{1\}}\frac{1}{2} \end{aligned} $$
as \(n\to\infty\) as shown by Theorem 3.1.