- Research
- Open access
- Published:
Existence of solutions for Caputo fractional delay differential equations with nonlocal and integral boundary conditions
Fixed Point Theory and Algorithms for Sciences and Engineering volume 2023, Article number: 1 (2023)
Abstract
In this paper, the existence and uniqueness of the solutions of Caputo fractional delay differential equations under nonlocal and integral boundary value conditions are studied. By using the Banach contraction principle and the Burton and Kirk fixed-point theorem, some new conclusions about the existence and uniqueness of solutions are obtained. An example is given to illustrate the main results.
1 Introduction
Recently, the importance of fractional differential equations in engineering and technology has become more and more significant, and it has been a considerable tool in the fields of physics, biology, economics, etc. [1–8]. The existence of solutions to boundary value problems of fractional differential equations has also attracted the attention of many studies.
The boundary value problem of differential equations has always been the focus of research, especially the differential equations containing Riemann–Liouville fractional calculus, Caputo fractional calculus, the Riesz–Caputo derivative, the p-Laplacian operator, and so on [9–12]. However, in these differential equations, delay is a nonnegligible influencing factor, which can reasonably consider the influence of the past on the current situation, making the research more realistic. As an important branch of differential equations, differential equations with delay have a wide range of applications in many fields such as control, biology, communication, and ecology [13–16].
In [17], Derbazi and Hammouohe used the fixed-point theorem to study the existence of solutions with nonlocal boundary values and integral boundary values:
where \({}^{c}D_{0^{+}}^{\gamma}\) is the Caputo fractional derivative of order \(\gamma \in \{\alpha , \beta , \beta _{1}\}\), \(2<\alpha \leq{3}\), \(0<\beta , \beta _{1}\leq{1}\). \(f:[0,1]\times \mathbb{R}^{2}\rightarrow \mathbb{R}\) and \(g:C([0,1],\mathbb{R})\) are continuous functions. \(I_{0^{+}}^{\sigma _{i}}\) is the Riemann–Liouville fractional integral of order \(\sigma _{i}>0\) (\(i=1,2\)).
In [18], by using the fixed-point theory and nonlinear analysis, Amjad et al. obtained the existence of solutions for the nonlocal boundary value problems of fractional differential equations,
where \(3<\zeta \leq 4\), \(\forall{s,t}\in{AC^{4}}[0,1]\), \(f:J\times \mathbb{R}\rightarrow \mathbb{R}\) is a continuous function.
Motivated by the above papers, in this work, we consider the following fractional boundary value problems of differential equations with delay:
where \({}^{c}D_{0^{+}}^{\alpha}\) and \({}^{c}D_{0^{+}}^{\beta}\) are the Caputo fractional derivatives, and \(I_{0^{+}}^{\sigma}\) is the Riemann–Liouville fractional integral, \(2<\alpha \leq 3\), \(0<\beta <1\), \(0<\tau <1\), \(0\leq \eta \leq 1\), \(\sigma >0\). \(f:[0,1]\times{C[-\tau ,0]}\times \mathbb{R}\rightarrow \mathbb{R}\) is continuous. \(g:C[0,1]\rightarrow \mathbb{R}\) is continuous, and \(g(0)=0\). \(a, b, c\in \mathbb{R}\), \(\phi \in{C[-\tau ,0]}\), \(\phi (0)=0\).
If \(u:[-\tau ,1]\rightarrow \mathbb{R}\), then \(\forall{t}\in [0,1]\), we define \(u_{t}\) by \(u_{t}(\theta )=u(t+\theta )\), \(\theta \in [-\tau ,0]\).
The organization of this paper is as follows. In Sect. 2, we show some necessary definitions and lemmas about fractional calculus theory. In Sect. 3, we find the equivalent equation of the solution of boundary value problem (1.1) and prove the existence and uniqueness of the solution. In Sect. 4, we will validate our main results by giving an example.
2 Preliminaries
In this section, we introduce some basic definitions and results that are used throughout this paper.
Definition 2.1
The Riemann–Liouville fractional integral of order \(\alpha >0\) of a function \(u\in{L^{1}}([0,1])\) is defined by
Moreover, for \(\alpha =0\), we set \(I_{0^{+}}^{\alpha}u:=u\).
Definition 2.2
The Caputo fractional derivative of order α of a function \(u\in{AC^{n}([0,1])}\) is represented by
where \(u^{(n)}(t)=\frac{d^{n}u(t)}{dt^{n}}\), \(\alpha >0\) (\(\alpha \notin \mathbb{N}\)), \(n=[\alpha ]+1\) and \([\alpha ]\) denotes the integer part of the real number α.
Lemma 2.3
([17])
Let \(\alpha , \beta >0\), \(n=[\alpha ]+1\), then the following formula holds:
Lemma 2.4
([17])
Let \(\alpha >\beta >0\), and \(u\in{L^{1}([0,1])}\). Then, the following formulas hold:
-
(1)
\(I_{0^{+}}^{\alpha}I_{0^{+}}^{\beta}u(t)=I_{0^{+}}^{\alpha +\beta}u(t)\);
-
(2)
\({}^{c}D_{0^{+}}^{\alpha}I_{0^{+}}^{\alpha}u(t)=u(t)\);
-
(3)
\({}^{c}D_{0^{+}}^{\beta}I_{0^{+}}^{\alpha}u(t)=I_{0^{+}}^{\alpha -\beta}u(t)\).
Lemma 2.5
([17])
Let \(\alpha >0\). Then, the following formula holds:
for some \(c_{j}\in \mathbb{R}\), \(j=0,\ldots ,n-1\), where \(n=[\alpha ]+1\).
Lemma 2.6
([17])
Let \(\alpha >0\), \(u\in{L([0,1],\mathbb{R})}\). Then, we have:
Lemma 2.7
([17])
The fractional integral \(I_{0^{+}}^{\alpha}, \alpha >0\) is bounded in \(L^{1}([0,1],\mathbb{R})\) with
3 Main results
In this part, we need some lemmas and then discuss the existence and uniqueness of a solution of BVP (1.1) by using some fixed-point theorems.
Now, we list some conditions for convenience:
- \((H_{1})\):
-
\(\Delta =(b+2c) ( \frac{a\eta ^{\sigma +1}}{\Gamma (\sigma +2)}-1 )-2(b+c) \frac{a\eta ^{\sigma +2}}{\Gamma (\sigma +3)}\neq 0\), \(b\neq 0\), \(b\neq{-2c}\).
- \((H_{2})\):
-
There exists \(l\in{L^{1}}(J,\mathbb{R}\mathbbm{_{+}})\), such that
$$ \bigl\vert {f(t,u_{1},v_{1})-f(t,u_{2},v_{2})} \bigr\vert \leq{l(t) \bigl( \Vert {u_{1}-u_{2}} \Vert _{\infty}+ \vert {v_{1}-v_{2}} \vert \bigr)},$$for \(t\in{J}\), \(u_{1},u_{2}\in{C_{\tau}}=C[-\tau ,0]\), \(v_{1}, v_{2}\in \mathbb{R}\).
- \((H_{3})\):
-
There exists a positive constant ω, such that
$$ \bigl\vert {g(u)-g(v)} \bigr\vert \leq \omega \Vert {u-v} \Vert _{J},\quad \forall{u,v}\in{C(J,\mathbb{R})}.$$ - \((H_{4})\):
-
There exists a nonnegative function \(q\in{L^{1}(J,\mathbb{R}_{+})}\), such that
$$ \bigl\vert {f(t,u,v)} \bigr\vert \leq{q(t) \bigl(1+ \Vert {u} \Vert _{\infty}+ \vert {v} \vert \bigr)}, \quad \forall (t,u,v)\in{J \times{C_{\tau}}\times \mathbb{R}}.$$
Let
Lemma 3.1
Suppose \(h\in{C(J,\mathbb{R})}\), \(2<\alpha \leq 3\), then the unique solution of the system
with boundary conditions
is given by
Proof
Applying \(I_{0^{+}}^{\alpha}\) to both sides of \({}^{c}D_{0^{+}}^{\alpha}u(t)=h(t)\), we have
By \(u(0)=0\), we know that \(c_{0}=0\). Then, \(u(t)=I_{0^{+}}^{\alpha}h(t)-c_{1}t-c_{2}t^{2}\).
Also, because \(u^{\prime }(0)=aI_{0^{+}}^{\sigma}u(\eta )\), we obtain
Then, by \(bu(1)+cu^{\prime }(1)=g(u)\), we obtain
Hence,
Substituting \(c_{1}\) and \(c_{2}\) into the above expression of \(u(t)\), we obtain
 □
It can be seen from Lemma 3.1 that u is the solution of BVP (1.1) if and only if it satisfies
For convenience, we note that
We define the space
equipped with the norm:
Then, X is a Banach space [17].
Define the integral operator \(T:X\rightarrow{X}\) by
Define the operator \(T_{1}\), \(T_{2}\):
It is obvious that
Lemma 3.2
Let \(f\in{C([0,1]\times \mathbb{R}\times \mathbb{R},\mathbb{R})}\). Then, \(u\in{X}\) is a solution of BVP (1.1) if and only if \(Tu=u\).
Proof
Let u be a solution of BVP (1.1). That is, u satisfies the equation and the boundary value conditions in (1.1). By Lemma 3.1, we have
Conversely, u satisfies
and denotes \(h(t)=f(t,u_{t},{}^{c}D_{0^{+}}^{\beta}u(t))\). Then, the above equation can be rewritten as
Therefore, by Lemma 3.1, we know that \(u(t)\) satisfies (3.1) and (3.2). That is, \(u(t)\) satisfies
Thereby, u is a solution of BVP (1.1).
In conclusion, u is a solution of BVP (1.1) if and only if \(Tu=u\). □
Now, we set some notations:
We are now ready to present our main results. We give a uniqueness result based on the Banach contraction principle.
Theorem 3.3
Assume that \((H_{1})\)–\((H_{3})\) hold. If
then BVP (1.1) has a unique solution on \([-\tau ,1]\).
Proof
We let the definition of the operator T be (1.1), and \(u, v\in{X}\). For all \(t\in{J}\), we have
It can be seen from \((H_{2})\) that
By Lemma 2.6, Lemma 2.7, and \((H_{3})\), we have
Therefore,
In addition, \(\forall{t}\in{J}\),
By the above proof, it is easy to see that
For every \(t\in [-\tau ,0]\), we have
Then, combining (3.8) and (3.9), we know that
Owing to \((Q_{1}+Q_{2})\|{l}\| _{L^{1}}+(P_{1}+P_{2})\omega <1\), T is contractive.
Hence, by the Banach contraction principle, BVP (1.1) has a unique solution. This completes the proof. □
Next, we give some existence results by the fixed-point theorem of Burton and Kirk [19].
Lemma 3.4
(Burton and Kirk fixed-point theorem [19])
Let X be a Banach space, and \(A, B:X\rightarrow{X}\) be two operators, such that A is a contraction and B is completely continuous. Then, either
-
(a)
the operator equation \(u=A(u)+B(u)\) has a solution, or
-
(b)
the set \(\Omega = \{u\in{X}:\lambda{A}(\frac{u}{\lambda})+\lambda{B(u)}=u \}\) is unbounded for \(\lambda \in (0,1)\).
Theorem 3.5
Suppose that \((H_{1})\), \((H_{3})\), and \((H_{4})\) hold. Moreover,
then BVP (1.1) has at least a solution on \([-\tau ,1]\).
Proof
The definition of \(T:X\rightarrow{X}\) is the same as (3.7).
Step 1: The mapping \(T_{1}:X\rightarrow{X}\) is continuous. Let \(u,\bar{u}\in{X}\). When \(u\rightarrow \bar{u}\), namely \(\|{u-\bar{u}}\| \rightarrow 0\), we have
Also, because
then,
From the above inequality, when \(u\rightarrow \bar{u}\), \(\|{T_{1}u-T_{1}\bar{u}}\| \rightarrow 0\), that is, \(T_{1}\) is continuous on X.
Step 2: Let \(B_{r}=\{u\in{X}:\|{u}\| _{X}\leq{r},r>0\}\). We will prove \(T_{1}(B_{r})\) is bounded and equicontinuous. \(\forall{u}\in{B_{r}}\), \(\forall{t}\in{J}\), we have
By \((H_{4})\), we know that
According to Lemma 2.6 and Lemma 2.7, we obtain
Thus,
Similarly, we can obtain
Therefore,
Hence, \(T_{1}(B_{r})\) is bounded.
Now, we will prove that \(T_{1}(B_{r})\) is equicontinuous.
Assume the following notation
Let \(t_{1}, t_{2}\in [-\tau ,1]\) with \(t_{1}< t_{2}\), \(u\in{B_{r}}\):
(i) If \(0\leq{t_{1}}< t_{2}\leq 1\), then
Similarly, we obtain:
(ii) If \(-\tau \leq{t_{1}}<0<t_{2}\leq 1\), then
(iii) If \(-\tau \leq{t_{1}}< t_{2}\leq 0\), it can be seen from the definition of Ï• that:
It can be seen from (i)–(iii) that \(T_{1}(B_{r})\) is equicontinuous.
Step 3: We will prove that \(T_{2}\) is contractive. \(\forall{u,v}\in{X}\), by \((H_{3})\), we have
Hence,
Hence, \(T_{2}\) is contractive.
Step 4: Let \(\Omega = \{u\in{X}:\lambda{T_{2}}(\frac{u}{\lambda})+\lambda{T_{1}(u)}=u, \lambda \in (0,1) \}\). \(\forall{u}\in \Omega \), there exists \(\lambda \in (0,1)\), such that
According to \((H_{3})\) and \((H_{4})\), we obtain
Thus, we have
then,
From (3.10) and (3.11), we obtain
Therefore, Ω is bounded. Hence, T has at least a fixed point, which is the solution of BVP (1.1). □
4 An example
Let \(\alpha =\frac{5}{2}\), \(\beta =\frac{1}{2}\), \(\tau =\frac{1}{2}\), \(\eta = \frac{1}{5}\), \(\sigma =\frac{1}{4}\), \(a=1\), \(b=2\), \(c=1\), \(\phi (t)=\frac{1}{2}t^{2}\), then we have
Let
We consider the following boundary value problem:
then for \(\forall{t}\in{J}\), \(\forall{u}\in{C[-\frac{1}{2},0]}\), \(\forall{v}\in \mathbb{R}\), we obtain
For \(\forall{t}\in{J}\), \(\forall{u,v}\in{C[0,1]}\), we have
Thus, \(q(t)=\frac{e^{t}+1}{138}\), \(\|{q}\| _{L^{1}}=\frac{e}{138}\), \(\omega =\frac{1}{163}\), \((Q_{1}+Q_{2})\|{q}\| _{L^{1}}+(P_{1}+P_{2})\omega =0.1301<1\). Therefore, according to Theorem 3.3, BVP (4.1) has at least one solution.
Availability of data and materials
All data generated or analyzed during this study are included in this article.
References
Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Math. Stud., vol. 204, pp. 43–67 (2006)
Adiguzel, R.S., Aksoy, U., Karapinar, E., et al.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. 20(2), 313–333 (2021)
Lazreg, J.E., Abbas, S., Benchohra, M., et al.: Impulsive Caputo–Fabrizio fractional differential equations in b-matric spaces. Open Math. 19, 363–372 (2021)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Lakshmkantham, V.: Theory of fractional functional differential equations. Nonlinear Anal. 69, 3337–3343 (2008)
Agarwal, R., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problem of non-linear fractional differential equations and inclusions. J. Math. Appl. 109(3), 973–1033 (2010)
Isaia, F.: On a nonlinear integral equation without compactness. Acta Math. Univ. Comen. 75(2), 233–240 (2016)
Hajipour, M., Jajarmi, A., Malek, A., et al.: Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation. Appl. Math. Comput. 325, 146–158 (2018)
Luca, R., Tudorache, A.: Nonnegative solutions for a Riemann–Liouville fractional boundary value problem. Open J. Appl. Sci. 9, 749–760 (2019)
Ahmad, B., Ntouyas, S.K.: Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Appl. Math. Comput. 266, 615–622 (2015)
Fulai, C., Baleanu, D., Cheng, W.G.: Existence results of fractional differential equations with Riesz–Caputo derivative. Eur. Phys. J. Spec. Top. 226, 3411–3425 (2017)
Tian, Y., Bai, Z., Sun, S.: Positive solutions for a boundary value problem of fractional differential equation with p-Laplacian operator. Adv. Differ. Equ. 2019, 349 (2019)
Benchohra, M., Henderson, J., Ntouyas, S., et al.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338, 1340–1350 (2008)
Wen, Y., Zhou, X.F., Zhang, Z., et al.: Lyapunov method for nonlinear fractional differential systems with delay. Nonlinear Dyn. 82, 1015–1025 (2015)
Zhao, K., Wang, K.: Existence of solutions for the delayed nonlinear fractional functional differential equations with three-point integral boundary value conditions. Adv. Differ. Equ. 2016, 284 (2016)
Zhao, K.: Triple positive solutions for two classes of delayed nonlinear fractional FDEs with nonlinear integral boundary value conditions. Bound. Value Probl. 2015, 181 (2015)
Derbazi, C., Hammouche, H.: Boundary value problems for Caputo fractional differential equations with nonlocal and fractional integral boundary conditions. Arab. J. Math. 9, 531–544 (2020)
Amjad, A., Nabeela, K., Seema, I.: On establishing qualitative theory to nonlinear boundary value problem of fractional differential equations. Math. Sci. 15, 395–403 (2021)
Burton, T.A., Kirk, C.: A fixed point theorem of Krasnoselskii–Schaefer type. Math. Nachr. 189, 23–31 (1998)
Acknowledgements
The authors express their thanks to the reviewers for their valuable suggestions.
Funding
The work was supported by the Anhui Provincial Natural Science Foundation (1608085MA12).
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
The authors confirm: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all coauthors, if any; that its publication has been approved (tacitly or explicitly) by the responsible authorities at the institution where the work is carried out.
Competing interests
The authors declare no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Cui, Z., Zhou, Z. Existence of solutions for Caputo fractional delay differential equations with nonlocal and integral boundary conditions. Fixed Point Theory Algorithms Sci Eng 2023, 1 (2023). https://doi.org/10.1186/s13663-022-00738-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13663-022-00738-3