Skip to main content

Existence of solutions for Caputo fractional delay differential equations with nonlocal and integral boundary conditions

Abstract

In this paper, the existence and uniqueness of the solutions of Caputo fractional delay differential equations under nonlocal and integral boundary value conditions are studied. By using the Banach contraction principle and the Burton and Kirk fixed-point theorem, some new conclusions about the existence and uniqueness of solutions are obtained. An example is given to illustrate the main results.

1 Introduction

Recently, the importance of fractional differential equations in engineering and technology has become more and more significant, and it has been a considerable tool in the fields of physics, biology, economics, etc. [1–8]. The existence of solutions to boundary value problems of fractional differential equations has also attracted the attention of many studies.

The boundary value problem of differential equations has always been the focus of research, especially the differential equations containing Riemann–Liouville fractional calculus, Caputo fractional calculus, the Riesz–Caputo derivative, the p-Laplacian operator, and so on [9–12]. However, in these differential equations, delay is a nonnegligible influencing factor, which can reasonably consider the influence of the past on the current situation, making the research more realistic. As an important branch of differential equations, differential equations with delay have a wide range of applications in many fields such as control, biology, communication, and ecology [13–16].

In [17], Derbazi and Hammouohe used the fixed-point theorem to study the existence of solutions with nonlocal boundary values and integral boundary values:

$$ \textstyle\begin{cases} {}^{c}D_{0^{+}}^{\alpha}u(t)=f(t,u(t), {}^{c}D_{0^{+}}^{\beta}u(t)), \quad t \in{J:=[0,1]}, \\ u(0)=g(u), \\ u'(0)=aI_{0^{+}}^{\sigma _{1}}u(\eta _{1}),\quad 0< \eta _{1}< 1, \\ {}^{c}D_{0^{+}}^{\beta _{1}}u(1)=bI_{0^{+}}^{\sigma _{2}}u(\eta _{2}), \quad 0< \eta _{2}< 1, \end{cases} $$

where \({}^{c}D_{0^{+}}^{\gamma}\) is the Caputo fractional derivative of order \(\gamma \in \{\alpha , \beta , \beta _{1}\}\), \(2<\alpha \leq{3}\), \(0<\beta , \beta _{1}\leq{1}\). \(f:[0,1]\times \mathbb{R}^{2}\rightarrow \mathbb{R}\) and \(g:C([0,1],\mathbb{R})\) are continuous functions. \(I_{0^{+}}^{\sigma _{i}}\) is the Riemann–Liouville fractional integral of order \(\sigma _{i}>0\) (\(i=1,2\)).

In [18], by using the fixed-point theory and nonlinear analysis, Amjad et al. obtained the existence of solutions for the nonlocal boundary value problems of fractional differential equations,

$$ \textstyle\begin{cases} D^{\zeta}v(t)=f(t,v(t)), \quad t\in{J:=[0,1]}, \\ v(0)=D^{1}v(0)=D^{2}v(0)=0,\qquad v(1)=h(v), \end{cases} $$

where \(3<\zeta \leq 4\), \(\forall{s,t}\in{AC^{4}}[0,1]\), \(f:J\times \mathbb{R}\rightarrow \mathbb{R}\) is a continuous function.

Motivated by the above papers, in this work, we consider the following fractional boundary value problems of differential equations with delay:

$$ \textstyle\begin{cases} {}^{c}D_{0^{+}}^{\alpha}u(t)=f(t,u_{t}, {}^{c}D_{0^{+}}^{\beta}u(t)), \quad t \in{J}:=[0,1], \\ u(0)=0, \qquad u^{\prime }(0)=aI_{0^{+}}^{\sigma}u(\eta ), \\ bu(1)+cu^{\prime }(1)=g(u), \\ u(t)=\phi (t),\quad {-}\tau \leq{t}\leq 0, \end{cases} $$
(1.1)

where \({}^{c}D_{0^{+}}^{\alpha}\) and \({}^{c}D_{0^{+}}^{\beta}\) are the Caputo fractional derivatives, and \(I_{0^{+}}^{\sigma}\) is the Riemann–Liouville fractional integral, \(2<\alpha \leq 3\), \(0<\beta <1\), \(0<\tau <1\), \(0\leq \eta \leq 1\), \(\sigma >0\). \(f:[0,1]\times{C[-\tau ,0]}\times \mathbb{R}\rightarrow \mathbb{R}\) is continuous. \(g:C[0,1]\rightarrow \mathbb{R}\) is continuous, and \(g(0)=0\). \(a, b, c\in \mathbb{R}\), \(\phi \in{C[-\tau ,0]}\), \(\phi (0)=0\).

If \(u:[-\tau ,1]\rightarrow \mathbb{R}\), then \(\forall{t}\in [0,1]\), we define \(u_{t}\) by \(u_{t}(\theta )=u(t+\theta )\), \(\theta \in [-\tau ,0]\).

The organization of this paper is as follows. In Sect. 2, we show some necessary definitions and lemmas about fractional calculus theory. In Sect. 3, we find the equivalent equation of the solution of boundary value problem (1.1) and prove the existence and uniqueness of the solution. In Sect. 4, we will validate our main results by giving an example.

2 Preliminaries

In this section, we introduce some basic definitions and results that are used throughout this paper.

Definition 2.1

The Riemann–Liouville fractional integral of order \(\alpha >0\) of a function \(u\in{L^{1}}([0,1])\) is defined by

$$ I_{0^{+}}^{\alpha}u(t)=\frac{1}{\Gamma (\alpha )} \int _{0}^{t}(t-s)^{ \alpha -1}u(s)\,ds .$$

Moreover, for \(\alpha =0\), we set \(I_{0^{+}}^{\alpha}u:=u\).

Definition 2.2

The Caputo fractional derivative of order α of a function \(u\in{AC^{n}([0,1])}\) is represented by

$$ {}^{c}D_{0^{+}}^{\alpha}u(t)= \textstyle\begin{cases} \frac{1}{\Gamma (n-\alpha )}\int _{0}^{t}(t-s)^{n-\alpha -1}u^{(n)}(s)\,ds , & \text{if }\alpha \notin \mathbb{N}, \\ u^{(n)}(t),& \text{if }\alpha \in \mathbb{N}, \end{cases} $$

where \(u^{(n)}(t)=\frac{d^{n}u(t)}{dt^{n}}\), \(\alpha >0\) (\(\alpha \notin \mathbb{N}\)), \(n=[\alpha ]+1\) and \([\alpha ]\) denotes the integer part of the real number α.

Lemma 2.3

([17])

Let \(\alpha , \beta >0\), \(n=[\alpha ]+1\), then the following formula holds:

$$ {}^{c}D_{0^{+}}^{\beta}t^{\beta}= \textstyle\begin{cases} \frac{\Gamma (\beta +1)}{\Gamma (\beta -\alpha +1)}t^{\beta -\alpha}, & (\beta \in \mathbb{N} \textit{ and } \beta \geq{n} \textit{ or } \beta \notin \mathbb{N} \textit{ and } \beta >n-1), \\ 0,& {\beta \in \{0,1,\ldots ,n-1\}}. \end{cases} $$

Lemma 2.4

([17])

Let \(\alpha >\beta >0\), and \(u\in{L^{1}([0,1])}\). Then, the following formulas hold:

  1. (1)

    \(I_{0^{+}}^{\alpha}I_{0^{+}}^{\beta}u(t)=I_{0^{+}}^{\alpha +\beta}u(t)\);

  2. (2)

    \({}^{c}D_{0^{+}}^{\alpha}I_{0^{+}}^{\alpha}u(t)=u(t)\);

  3. (3)

    \({}^{c}D_{0^{+}}^{\beta}I_{0^{+}}^{\alpha}u(t)=I_{0^{+}}^{\alpha -\beta}u(t)\).

Lemma 2.5

([17])

Let \(\alpha >0\). Then, the following formula holds:

$$ I_{0^{+}}^{\alpha}\bigl({}^{c}D_{0^{+}}^{\alpha}u(t) \bigr)=u(t)+\sum_{j=0}^{n-1}c_{j}t^{j},$$

for some \(c_{j}\in \mathbb{R}\), \(j=0,\ldots ,n-1\), where \(n=[\alpha ]+1\).

Lemma 2.6

([17])

Let \(\alpha >0\), \(u\in{L([0,1],\mathbb{R})}\). Then, we have:

$$ \bigl\vert {I_{0^{+}}^{\alpha +1}u(t)} \bigr\vert \leq \bigl\Vert {I_{0^{+}}^{ \alpha}u} \bigr\Vert _{L^{1}},\quad \forall{t}\in [0,1].$$

Lemma 2.7

([17])

The fractional integral \(I_{0^{+}}^{\alpha}, \alpha >0\) is bounded in \(L^{1}([0,1],\mathbb{R})\) with

$$ \bigl\Vert {I_{0^{+}}^{\alpha}u} \bigr\Vert _{L^{1}}\leq \frac{ \Vert {u} \Vert _{L^{1}}}{\Gamma (\alpha +1)}.$$

3 Main results

In this part, we need some lemmas and then discuss the existence and uniqueness of a solution of BVP (1.1) by using some fixed-point theorems.

Now, we list some conditions for convenience:

\((H_{1})\):

\(\Delta =(b+2c) ( \frac{a\eta ^{\sigma +1}}{\Gamma (\sigma +2)}-1 )-2(b+c) \frac{a\eta ^{\sigma +2}}{\Gamma (\sigma +3)}\neq 0\), \(b\neq 0\), \(b\neq{-2c}\).

\((H_{2})\):

There exists \(l\in{L^{1}}(J,\mathbb{R}\mathbbm{_{+}})\), such that

$$ \bigl\vert {f(t,u_{1},v_{1})-f(t,u_{2},v_{2})} \bigr\vert \leq{l(t) \bigl( \Vert {u_{1}-u_{2}} \Vert _{\infty}+ \vert {v_{1}-v_{2}} \vert \bigr)},$$

for \(t\in{J}\), \(u_{1},u_{2}\in{C_{\tau}}=C[-\tau ,0]\), \(v_{1}, v_{2}\in \mathbb{R}\).

\((H_{3})\):

There exists a positive constant ω, such that

$$ \bigl\vert {g(u)-g(v)} \bigr\vert \leq \omega \Vert {u-v} \Vert _{J},\quad \forall{u,v}\in{C(J,\mathbb{R})}.$$
\((H_{4})\):

There exists a nonnegative function \(q\in{L^{1}(J,\mathbb{R}_{+})}\), such that

$$ \bigl\vert {f(t,u,v)} \bigr\vert \leq{q(t) \bigl(1+ \Vert {u} \Vert _{\infty}+ \vert {v} \vert \bigr)}, \quad \forall (t,u,v)\in{J \times{C_{\tau}}\times \mathbb{R}}.$$

Let

$$\begin{aligned}& m_{1} =\frac{a(b+2c)}{\Delta},\qquad m_{2}=- \frac{2ba\eta ^{\sigma +2}}{\Delta \Gamma (\sigma +3)}, \qquad m_{3}=\frac{m_{2}c}{b},\qquad m_{4}=-\frac{m_{2}}{b}, \\& m_{5} =-\frac{a(b+c)}{\Delta}, \qquad m_{6}= \frac{2b(b+c)a\eta ^{\sigma +2}}{\Delta (b+2c)\Gamma (\sigma +3)}+\frac{b}{b+2c}, \\& m_{7} =-\frac{2c(b+c)a\eta ^{\sigma +2}}{\Delta (b+2c)\Gamma (\sigma +3)}-\frac{c}{b+2c},\qquad m_{8}=\frac{2(b+c)a\eta ^{\sigma +2}}{(b+2c)\Delta \Gamma (\sigma +3)}+\frac{1}{b+2c}. \end{aligned}$$

Lemma 3.1

Suppose \(h\in{C(J,\mathbb{R})}\), \(2<\alpha \leq 3\), then the unique solution of the system

$$ {}^{c}D_{0^{+}}^{\alpha}u(t)=h(t), $$
(3.1)

with boundary conditions

$$ \textstyle\begin{cases} u(0)=0,\qquad u^{\prime }(0)=aI_{0^{+}}^{\sigma}u(\eta ), \\ bu(1)+cu^{\prime }(1)=g(u), \end{cases} $$
(3.2)

is given by

$$\begin{aligned} u(t)&=I_{0^{+}}^{\alpha}h(t)+\bigl(m_{5}t^{2}-m_{1}t \bigr)I_{0^{+}}^{\alpha + \sigma}h(\eta )+\bigl(m_{6}t^{2}-m_{2}t \bigr)I_{0^{+}}^{\alpha}h(1)+\bigl(m_{7}t^{2}-m_{3}t \bigr)I_{0^{+}}^{ \alpha -1}h(1) \\ &\quad {}+\bigl(m_{8}t^{2}-m_{4}t\bigr)g(u). \end{aligned}$$

Proof

Applying \(I_{0^{+}}^{\alpha}\) to both sides of \({}^{c}D_{0^{+}}^{\alpha}u(t)=h(t)\), we have

$$ u(t)=I_{0^{+}}^{\alpha}h(t)-c_{0}-c_{1}t-c_{2}t^{2}, \quad {c_{0}, c_{1}, c_{2}\in \mathbb{R}}.$$

By \(u(0)=0\), we know that \(c_{0}=0\). Then, \(u(t)=I_{0^{+}}^{\alpha}h(t)-c_{1}t-c_{2}t^{2}\).

Also, because \(u^{\prime }(0)=aI_{0^{+}}^{\sigma}u(\eta )\), we obtain

$$ \biggl(\frac{a\eta ^{\sigma +1}}{\Gamma (\sigma +2)}-1 \biggr)c_{1}+2 \frac{a\eta ^{\sigma +2}}{\Gamma (\sigma +3)}c_{2}=aI_{0^{+}}^{ \sigma +\alpha}h( \eta ).$$

Then, by \(bu(1)+cu^{\prime }(1)=g(u)\), we obtain

$$ bI_{0^{+}}^{\alpha}h(1)-bc_{1}-bc_{2}+c \bigl(I_{0^{+}}^{\alpha -1}h(1)-c_{1}-2c_{2} \bigr)=g(u).$$

Hence,

$$\begin{aligned}& \begin{aligned} c_{1}&=\frac{a(b+2c)}{\Delta}I_{0^{+}}^{\alpha +\sigma}h( \eta )+ \frac{2}{\Delta} \biggl(\frac{a\eta ^{\sigma +2}}{\Gamma (\sigma +3)} \biggr)g(u)- \frac{2b}{\Delta} \biggl( \frac{a\eta ^{\sigma +2}}{\Gamma (\sigma +3)} \biggr)I_{0^{+}}^{ \alpha}h(1) \\ &\quad {}-\frac{2c}{\Delta} \biggl( \frac{a\eta ^{\sigma +2}}{\Gamma (\sigma +3)} \biggr)I_{0^{+}}^{ \alpha -1}h(1), \end{aligned} \\& \begin{aligned} c_{2}&=-\frac{a(b+c)}{\Delta}I_{0^{+}}^{\alpha +\sigma}h( \eta )- \biggl[\frac{2(b+c)}{\Delta (b+2c)} \biggl( \frac{a\eta ^{\sigma +2}}{\Gamma (\sigma +3)} \biggr)+ \frac{1}{b+2c} \biggr]g(u) \\ &\quad {}+ \biggl[\frac{2b(b+c)}{\Delta (b+2c)} \biggl( \frac{a\eta ^{\sigma +2}}{\Gamma (\sigma +3)} \biggr)+ \frac{b}{b+2c} \biggr]I_{0^{+}}^{\alpha}h(1) \\ &\quad {}+ \biggl[ \frac{2c(b+c)}{\Delta (b+2c)} \biggl(\frac{a\eta ^{\sigma +2}}{\Gamma (\sigma +3)} \biggr)+ \frac{c}{b+2c} \biggr]I_{0^{+}}^{\alpha -1}h(1). \end{aligned} \end{aligned}$$

Substituting \(c_{1}\) and \(c_{2}\) into the above expression of \(u(t)\), we obtain

$$\begin{aligned} u(t)&=I_{0^{+}}^{\alpha}h(t)+\bigl(m_{5}t^{2}-m_{1}t \bigr)I_{0^{+}}^{\alpha + \sigma}h(\eta )+\bigl(m_{6}t^{2}-m_{2}t \bigr)I_{0^{+}}^{\alpha}h(1)+\bigl(m_{7}t^{3}-m_{3}t \bigr)I_{0^{+}}^{ \alpha -1}h(1) \\ &\quad {}+\bigl(m_{8}t^{2}-m_{4}t\bigr)g(u). \end{aligned}$$

 □

It can be seen from Lemma 3.1 that u is the solution of BVP (1.1) if and only if it satisfies

$$ u(t)= \textstyle\begin{cases} I_{0^{+}}^{\alpha}f(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s))(t) \\ \quad {}+(m_{5}t^{2}-m_{1}t)I_{0^{+}}^{ \alpha +\sigma}f(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s))(\eta ) \\ \quad {}+(m_{6}t^{2}-m_{2}t)I_{0^{+}}^{\alpha}f(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s))(1) \\ \quad {}+(m_{7}t^{2}-m_{3}t)I_{0^{+}}^{\alpha -1}f(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s))(1) \\ \quad {}+(m_{8}t^{2}-m_{4}t)g(u),& {t\in{J}}, \\ \phi (t),& {t\in [-\tau ,0]}. \end{cases} $$
(3.3)

For convenience, we note that

$$ I_{0^{+}}^{\alpha}f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr) (t)= \frac{1}{\Gamma (\alpha )} \int _{0}^{t}(t-s)^{\alpha -1}f \bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)\,ds ,\quad t\in{J}.$$

We define the space

$$ X=\bigl\{ x\mid {x}\in{C[-\tau ,1]}, {}^{c}D_{0^{+}}^{\beta}u \in{C[0,1]}, 0< \beta < 1\bigr\} $$

equipped with the norm:

$$ \Vert {u} \Vert _{X}= \Vert {u} \Vert _{\infty}+ \bigl\Vert {{}^{c}D_{0^{+}}^{\beta}u} \bigr\Vert _{J}= \sup_{t \in [-\tau ,1]} \bigl\vert {u(t)} \bigr\vert +\sup_{t\in{J}} \bigl\vert {{}^{c}D_{0^{+}}^{ \beta}u(t)} \bigr\vert .$$

Then, X is a Banach space [17].

Define the integral operator \(T:X\rightarrow{X}\) by

$$ (Tu) (t)= \textstyle\begin{cases} I_{0^{+}}^{\alpha}f(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s))(t) \\ \quad {}+(m_{5}t^{2}-m_{1}t)I_{0^{+}}^{ \alpha +\sigma}f(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s))(\eta ) \\ \quad {}+(m_{6}t^{2}-m_{2}t)I_{0^{+}}^{\alpha}f(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s))(1) \\ \quad {}+(m_{7}t^{2}-m_{3}t)I_{0^{+}}^{\alpha -1}f(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s))(1) \\ \quad {}+(m_{8}t^{2}-m_{4}t)g(u),& {t\in{J}}, \\ \phi (t),& {t\in [-\tau ,0]}. \end{cases} $$
(3.4)

Define the operator \(T_{1}\), \(T_{2}\):

$$\begin{aligned}& (T_{1}u) (t)= \textstyle\begin{cases} I_{0^{+}}^{\alpha}f(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s))(t) \\ \quad {}+(m_{5}t^{2}-m_{1}t)I_{0^{+}}^{ \alpha +\sigma}f(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s))(\eta ) \\ \quad {}+(m_{6}t^{2}-m_{2}t)I_{0^{+}}^{\alpha}f(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s))(1) \\ \quad {}+(m_{7}t^{2}-m_{3}t)I_{0^{+}}^{\alpha -1}f(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s))(1),& {t\in{J}}, \\ \phi (t),& {t\in [-\tau ,0]}, \end{cases}\displaystyle \end{aligned}$$
(3.5)
$$\begin{aligned}& (T_{2}u) (t)= \textstyle\begin{cases} (m_{8}t^{2}-m_{4}t)g(u),& {t\in{J}}, \\ 0,& {t\in [-\tau ,0]}. \end{cases}\displaystyle \end{aligned}$$
(3.6)

It is obvious that

$$ Tu=T_{1}u+T_{2}u. $$
(3.7)

Lemma 3.2

Let \(f\in{C([0,1]\times \mathbb{R}\times \mathbb{R},\mathbb{R})}\). Then, \(u\in{X}\) is a solution of BVP (1.1) if and only if \(Tu=u\).

Proof

Let u be a solution of BVP (1.1). That is, u satisfies the equation and the boundary value conditions in (1.1). By Lemma 3.1, we have

$$\begin{aligned} {u(t)}&=I_{0^{+}}^{\alpha}f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr) (t)+\bigl(m_{5}t^{2}-m_{1}t \bigr)I_{0^{+}}^{ \alpha +\sigma}f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr) (\eta ) \\ &\quad {}+\bigl(m_{6}t^{2}-m_{2}t \bigr)I_{0^{+}}^{\alpha}f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr) (1) \\ &\quad {}+\bigl(m_{7}t^{2}-m_{3}t \bigr)I_{0^{+}}^{\alpha -1}f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr) (1) \\ &\quad {}+\bigl(m_{8}t^{2}-m_{4}t \bigr)g(u)=Tu(t). \end{aligned}$$

Conversely, u satisfies

$$\begin{aligned} u(t)&=Tu(t) \\ &=I_{0^{+}}^{\alpha}f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr) (t)+\bigl(m_{5}t^{2}-m_{1}t \bigr)I_{0^{+}}^{ \alpha +\sigma}f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr) (\eta ) \\ &\quad {}+\bigl(m_{6}t^{2}-m_{2}t \bigr)I_{0^{+}}^{\alpha}f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr) (1) \\ &\quad {}+\bigl(m_{7}t^{2}-m_{3}t \bigr)I_{0^{+}}^{\alpha -1}f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr) (1) \\ &\quad {}+\bigl(m_{8}t^{2}-m_{4}t\bigr)g(u) \end{aligned}$$

and denotes \(h(t)=f(t,u_{t},{}^{c}D_{0^{+}}^{\beta}u(t))\). Then, the above equation can be rewritten as

$$\begin{aligned} {u(t)}&=I_{0^{+}}^{\alpha}h(s) (t)+\bigl(m_{5}t^{2}-m_{1}t \bigr)I_{0^{+}}^{ \alpha +\sigma}h(s) (\eta )+\bigl(m_{6}t^{2}-m_{2}t \bigr)I_{0^{+}}^{\alpha}h(s) (1) \\ &\quad {}+\bigl(m_{7}t^{2}-m_{3}t \bigr)I_{0^{+}}^{\alpha -1}h(s) (1)+\bigl(m_{8}t^{2}-m_{4}t \bigr)g(u). \end{aligned}$$

Therefore, by Lemma 3.1, we know that \(u(t)\) satisfies (3.1) and (3.2). That is, \(u(t)\) satisfies

$$ \textstyle\begin{cases} {}^{c}D_{0^{+}}^{\alpha}u(t)=h(t)=f(t,u_{t}, {}^{c}D_{0^{+}}^{\beta}u(t)),\quad t\in{J}:=[0,1], \\ u(0)=0,\qquad u^{\prime }(0)=aI_{0^{+}}^{\sigma}u(\eta ), \\ bu(1)+cu^{\prime }(1)=g(u), \\ u(t)=\phi (t),\quad {-}\tau \leq{t}\leq 0. \end{cases} $$

Thereby, u is a solution of BVP (1.1).

In conclusion, u is a solution of BVP (1.1) if and only if \(Tu=u\). □

Now, we set some notations:

$$\begin{aligned}& Q_{1}= \frac{1+ \vert {m_{6}} \vert + \vert {m_{2}} \vert }{\Gamma (\alpha )}+ \frac{ \vert {m_{5}} \vert + \vert {m_{1}} \vert }{\Gamma (\alpha +\sigma )}+ \frac{ \vert {m_{7}} \vert + \vert {m_{3}} \vert }{\Gamma (\alpha -1)},\\& Q_{2}=\frac{1}{\Gamma (\alpha -\beta )}+ \frac{2 \vert {m_{5}} \vert +(2-\beta ) \vert {m_{1}} \vert }{\Gamma (3-\beta )\Gamma (\alpha +\sigma )}+ \frac{2 \vert {m_{6}} \vert +(2-\beta ) \vert {m_{2}} \vert }{\Gamma (3-\beta )\Gamma (\alpha )}+ \frac{2 \vert {m_{7}} \vert +(2-\beta ) \vert {m_{3}} \vert }{\Gamma (3-\beta )\Gamma (\alpha -1)},\\& P_{1}= \vert {m_{8}} \vert + \vert {m_{4}} \vert ,\qquad P_{2}= \frac{2 \vert {m_{8}} \vert +(2-\beta ) \vert {m_{4}} \vert }{\Gamma (3-\beta )}. \end{aligned}$$

We are now ready to present our main results. We give a uniqueness result based on the Banach contraction principle.

Theorem 3.3

Assume that \((H_{1})\)–\((H_{3})\) hold. If

$$ (Q_{1}+Q_{2}) \Vert {l} \Vert _{L^{1}}+(P_{1}+P_{2}) \omega < 1,$$

then BVP (1.1) has a unique solution on \([-\tau ,1]\).

Proof

We let the definition of the operator T be (1.1), and \(u, v\in{X}\). For all \(t\in{J}\), we have

$$\begin{aligned} \bigl\vert (Tu) (t)-(Tv) (t) \bigr\vert &=I_{0^{+}}^{\alpha} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)-f(s,v_{s},{}^{c}D_{0^{+}}^{\beta}v(s)} \bigr\vert (t) \\ &\quad {}+ \bigl\vert {m_{5}t^{2}-m_{1}t} \bigr\vert {I_{0^{+}}^{\alpha +\sigma}} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)-f\bigl(s,v_{s},{}^{c}D_{0^{+}}^{\beta}v(s) \bigr)} \bigr\vert (\eta ) \\ &\quad {}+ \bigl\vert {m_{6}t^{2}-m_{2}t} \bigr\vert {I_{0^{+}}^{\alpha}} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)-f\bigl(s,v_{s},{}^{c}D_{0^{+}}^{\beta}v(s) \bigr)} \bigr\vert (1) \\ &\quad {}+ \bigl\vert {m_{7}t^{2}-m_{3}t} \bigr\vert {I_{0^{+}}^{\alpha -1}} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)-f\bigl(s,v_{s},{}^{c}D_{0^{+}}^{\beta}v(s) \bigr)} \bigr\vert (1) \\ &\quad {}+ \bigl\vert {m_{8}t^{2}-m_{4}t} \bigr\vert \bigl\vert {g(u)-g(v)} \bigr\vert . \end{aligned}$$

It can be seen from \((H_{2})\) that

$$\begin{aligned} \bigl\vert (Tu) (t)-(Tv) (t) \bigr\vert &\leq \bigl( \Vert {u-v} \Vert _{ \infty}+ \bigl\Vert {{}^{c}D_{0^{+}}^{\beta}u-{}^{c}D_{0^{+}}^{\beta}v} \bigr\Vert _{J}\bigr) \bigl[I_{0^{+}}^{\alpha}l(s) (t) \\ &\quad {}+\bigl( \vert {m_{5}} \vert + \vert {m_{1}} \vert \bigr)I_{0^{+}}^{\alpha + \sigma}l(s) (\eta )+\bigl( \vert {m_{6}} \vert + \vert {m_{2}} \vert \bigr)I_{0^{+}}^{ \alpha}l(s) (1) \\ &\quad {}+\bigl( \vert {m_{7}} \vert + \vert {m_{3}} \vert \bigr)I_{0^{+}}^{\alpha -1}l(s) (1) \bigr]+\bigl( \vert {m_{8}} \vert + \vert {m_{4}} \vert \bigr) \bigl\vert {g(u)-g(v)} \bigr\vert . \end{aligned}$$

By Lemma 2.6, Lemma 2.7, and \((H_{3})\), we have

$$\begin{aligned} \bigl\vert {Tu(t)-Tv(t)} \bigr\vert &\leq \Vert {u-v} \Vert _{X} \biggl( \frac{1}{\Gamma (\alpha )}+ \frac{ \vert {m_{5}} \vert + \vert {m_{1}} \vert }{\Gamma (\alpha +\sigma )}+ \frac{ \vert {m_{6}} \vert + \vert {m_{2}} \vert }{\Gamma (\alpha )}+ \frac{ \vert {m_{7}} \vert + \vert {m_{3}} \vert }{\Gamma (\alpha -1)} \biggr) \Vert {l} \Vert _{L^{1}} \\ &\quad {}+\bigl( \vert {m_{8}} \vert + \vert {m_{4}} \vert \bigr)\omega \Vert {u-v} \Vert _{J}. \end{aligned}$$

Therefore,

$$ \sup_{t\in{J}} \bigl\vert {Tu(t)-Tv(t)} \bigr\vert = \Vert {Tu-Tv} \Vert _{J}\leq \bigl(Q_{1} \Vert {l} \Vert _{L^{1}}+P_{1} \omega \bigr) \Vert {u-v} \Vert _{X}. $$
(3.8)

In addition, \(\forall{t}\in{J}\),

$$\begin{aligned} {}^{c}D_{0^{+}}^{\beta}(Tu) (t)&=I_{0^{+}}^{\alpha -\beta}f \bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr) (t) \\ &\quad {}+ \frac{2m_{5}t^{2-\beta}-(2-\beta )m_{1}t^{1-\beta}}{\Gamma (3-\beta )}I_{0^{+}}^{ \alpha +\sigma}f \bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr) (\eta ) \\ &\quad {}+ \frac{2m_{6}t^{2-\beta}-(2-\beta )m_{2}t^{1-\beta}}{\Gamma (3-\beta )}I_{0^{+}}^{ \alpha}f \bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr) (1) \\ &\quad {}+ \frac{2m_{7}t^{2-\beta}-(2-\beta )m_{3}t^{1-\beta}}{\Gamma (3-\beta )}I_{0^{+}}^{ \alpha -1}f \bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr) (1) \\ &\quad {}+ \frac{2m_{8}t^{2-\beta}-(2-\beta )m_{4}t^{1-\beta}}{\Gamma (3-\beta )}g(u). \end{aligned}$$

By the above proof, it is easy to see that

$$ \bigl\Vert {}^{c}D_{0^{+}}^{\beta}Tu-{}^{c}D_{0^{+}}^{\beta}Tv \bigr\Vert _{J}\leq \bigl(Q_{2} \Vert {l} \Vert _{L^{1}}+P_{2}\omega \bigr) \Vert {u-v} \Vert _{X}. $$
(3.9)

For every \(t\in [-\tau ,0]\), we have

$$ \bigl\vert (Tu) (t)-(Tv) (t) \bigr\vert =0.$$

Then, combining (3.8) and (3.9), we know that

$$ \Vert {Tu-Tv} \Vert _{X}\leq \bigl[(Q_{1}+Q_{2}) \Vert {l} \Vert _{L^{1}}+(P_{1}+P_{2}) \omega \bigr] \Vert {u-v} \Vert _{X}.$$

Owing to \((Q_{1}+Q_{2})\|{l}\| _{L^{1}}+(P_{1}+P_{2})\omega <1\), T is contractive.

Hence, by the Banach contraction principle, BVP (1.1) has a unique solution. This completes the proof. □

Next, we give some existence results by the fixed-point theorem of Burton and Kirk [19].

Lemma 3.4

(Burton and Kirk fixed-point theorem [19])

Let X be a Banach space, and \(A, B:X\rightarrow{X}\) be two operators, such that A is a contraction and B is completely continuous. Then, either

  1. (a)

    the operator equation \(u=A(u)+B(u)\) has a solution, or

  2. (b)

    the set \(\Omega = \{u\in{X}:\lambda{A}(\frac{u}{\lambda})+\lambda{B(u)}=u \}\) is unbounded for \(\lambda \in (0,1)\).

Theorem 3.5

Suppose that \((H_{1})\), \((H_{3})\), and \((H_{4})\) hold. Moreover,

$$ (Q_{1}+Q_{2}) \Vert {q} \Vert _{L^{1}}+(P_{1}+P_{2}) \omega < 1, $$
(3.10)

then BVP (1.1) has at least a solution on \([-\tau ,1]\).

Proof

The definition of \(T:X\rightarrow{X}\) is the same as (3.7).

Step 1: The mapping \(T_{1}:X\rightarrow{X}\) is continuous. Let \(u,\bar{u}\in{X}\). When \(u\rightarrow \bar{u}\), namely \(\|{u-\bar{u}}\| \rightarrow 0\), we have

$$\begin{aligned}& \sup_{t\in{J}}I_{0^{+}}^{\alpha} \bigl\vert {f \bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)-f\bigl(s,\bar{u}_{s},{}^{c}D_{0^{+}}^{\beta} \bar{u}(s)\bigr)} \bigr\vert (t) \rightarrow 0, \\& \sup_{t\in{J}}I_{0^{+}}^{\alpha +\sigma} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)-f\bigl(s,\bar{u}_{s},{}^{c}D_{0^{+}}^{\beta} \bar{u}(s)\bigr)} \bigr\vert (t) \rightarrow 0, \\& \sup_{t\in{J}}I_{0^{+}}^{\alpha} \bigl\vert {f \bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)-f\bigl(s,\bar{u}_{s},{}^{c}D_{0^{+}}^{\beta} \bar{u}(s)\bigr)} \bigr\vert (t) \rightarrow 0, \\& \sup_{t\in{J}}I_{0^{+}}^{\alpha -1} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)-f\bigl(s,\bar{u}_{s},{}^{c}D_{0^{+}}^{\beta} \bar{u}(s)\bigr) \bigr\vert (t)} \rightarrow 0. \end{aligned}$$

Also, because

$$\begin{aligned} \bigl\vert {T_{1}u(t)-T_{1}\bar{u}(t)} \bigr\vert &\leq I_{0^{+}}^{ \alpha} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr)-f\bigl(s,\bar{u}_{s},{}^{c}D_{0^{+}}^{ \beta} \bar{u}(s)\bigr)} \bigr\vert (t) \\ &\quad {}+\bigl(m_{5}t^{2}-m_{1}t \bigr)I_{0^{+}}^{\alpha +\sigma} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)-f\bigl(s,\bar{u}_{s},{}^{c}D_{0^{+}}^{\beta} \bar{u}(s)\bigr)} \bigr\vert ( \eta ) \\ &\quad {}+\bigl(m_{6}t^{2}-m_{2}t \bigr)I_{0^{+}}^{\alpha} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)-f\bigl(s,\bar{u}_{s},{}^{c}D_{0^{+}}^{\beta} \bar{u}(s)\bigr)} \bigr\vert (1) \\ &\quad {}+\bigl(m_{7}t^{2}-m_{3}t \bigr)I_{0^{+}}^{\alpha -1} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)-f\bigl(s,\bar{u}_{s},{}^{c}D_{0^{+}}^{\beta} \bar{u}(s)\bigr) \bigr\vert (1)}, \end{aligned}$$

then,

$$\begin{aligned} \Vert {T_{1}u-T_{1}\bar{u}} \Vert &=\sup _{t\in{J}} \bigl\vert {T_{1}u(t)-T_{1} \bar{u}(t)} \bigr\vert \\ &\leq \sup_{t\in{J}}I_{0^{+}}^{\alpha} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)-f\bigl(s,\bar{u}_{s},{}^{c}D_{0^{+}}^{\beta} \bar{u}(s)\bigr)} \bigr\vert (t) \\ &\quad {}+\sup_{t\in{J}}\bigl(m_{5}t^{2}-m_{1}t \bigr)I_{0^{+}}^{\alpha + \sigma} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr)-f\bigl(s,\bar{u}_{s},{}^{c}D_{0^{+}}^{ \beta} \bar{u}(s)\bigr)} \bigr\vert (\eta ) \\ &\quad {}+\sup_{t\in{J}}\bigl(m_{6}t^{2}-m_{2}t \bigr)I_{0^{+}}^{\alpha} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)-f\bigl(s,\bar{u}_{s},{}^{c}D_{0^{+}}^{\beta} \bar{u}(s)\bigr)} \bigr\vert (1) \\ &\quad {}+\sup_{t\in{J}}\bigl(m_{7}t^{2}-m_{3}t \bigr)I_{0^{+}}^{\alpha -1} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr)-f\bigl(s,\bar{u}_{s},{}^{c}D_{0^{+}}^{ \beta} \bar{u}(s)\bigr) \bigr\vert (1)}. \end{aligned}$$

From the above inequality, when \(u\rightarrow \bar{u}\), \(\|{T_{1}u-T_{1}\bar{u}}\| \rightarrow 0\), that is, \(T_{1}\) is continuous on X.

Step 2: Let \(B_{r}=\{u\in{X}:\|{u}\| _{X}\leq{r},r>0\}\). We will prove \(T_{1}(B_{r})\) is bounded and equicontinuous. \(\forall{u}\in{B_{r}}\), \(\forall{t}\in{J}\), we have

$$\begin{aligned} \bigl\vert (T_{1}u) (t) \bigr\vert &\leq{I_{0^{+}}^{\alpha}} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)} \bigr\vert (t)+\bigl( \vert {m_{5}} \vert + \vert {m_{1}} \vert \bigr)I_{0^{+}}^{ \alpha +\sigma} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr)} \bigr\vert ( \eta ) \\ &\quad {}+\bigl( \vert {m_{6}} \vert + \vert {m_{2}} \vert \bigr)I_{0^{+}}^{\alpha} \bigl\vert {f \bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)} \bigr\vert (1) \\ &\quad {}+\bigl( \vert {m_{7}} \vert + \vert {m_{3}} \vert \bigr)I_{0^{+}}^{ \alpha -1} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr)} \bigr\vert (1). \end{aligned}$$

By \((H_{4})\), we know that

$$\begin{aligned} \bigl\vert (T_{1}u) (t) \bigr\vert &\leq \bigl(1+ \Vert {u} \Vert _{\infty}+ \vert {v} \vert \bigr)\bigl[I_{0^{+}}^{\alpha}q(s) (t)+\bigl( \vert {m_{5}} \vert + \vert {m_{1}} \vert \bigr)I_{0^{+}}^{\alpha +\sigma}q(s) (\eta ) \\ &\quad {}+\bigl( \vert {m_{6}} \vert + \vert {m_{2}} \vert \bigr)I_{0^{+}}^{\alpha}q(s) (1)+\bigl( \vert {m_{7}} \vert + \vert {m_{3}} \vert \bigr)I_{0^{+}}^{\alpha -1}q(s) (1)\bigr]. \end{aligned}$$

According to Lemma 2.6 and Lemma 2.7, we obtain

$$\begin{aligned} \bigl\vert (T_{1}u) (t) \bigr\vert &\leq{Q_{1}} \Vert {q} \Vert _{L^{1}}\bigl(1+ \Vert {u} \Vert _{\infty}+ \vert {v} \vert \bigr) \\ &\leq{Q_{1}} \Vert {q} \Vert _{L^{1}}\bigl(1+ \Vert {u} \Vert _{\infty}+ \Vert {v} \Vert _{J}\bigr) \\ &\leq{Q_{1}} \Vert {q} \Vert _{L^{1}}\bigl(1+ \Vert {u} \Vert _{X}\bigr). \end{aligned}$$

Thus,

$$ \Vert {T_{1}u} \Vert _{\infty}\leq{Q_{1}} \Vert {q} \Vert _{L^{1}}\bigl(1+ \Vert {u} \Vert _{X}\bigr)+ \Vert \phi \Vert _{\infty}.$$

Similarly, we can obtain

$$ \bigl\Vert {}^{c}D_{0^{+}}^{\beta}T_{1}u \bigr\Vert _{J}\leq{Q_{2}} \Vert {q} \Vert _{L^{1}}\bigl(1+ \Vert {u} \Vert _{X}\bigr).$$

Therefore,

$$\begin{aligned} \Vert {T_{1}u} \Vert _{X}&\leq ({Q_{1}+Q_{2}}) \Vert {q} \Vert _{L^{1}} \bigl(1+ \Vert {u} \Vert _{X}\bigr)+ \Vert \phi \Vert _{\infty} \\ &\leq ({Q_{1}+Q_{2}}) \Vert {q} \Vert _{L^{1}}(1+r)+r. \end{aligned}$$

Hence, \(T_{1}(B_{r})\) is bounded.

Now, we will prove that \(T_{1}(B_{r})\) is equicontinuous.

Assume the following notation

$$ M_{r}=\sup \bigl\{ \bigl\vert {f(t,u,v)} \bigr\vert :t\in{J}, \Vert {u} \Vert _{\infty}\leq{r}, \vert {v} \vert \leq{r} \bigr\} .$$

Let \(t_{1}, t_{2}\in [-\tau ,1]\) with \(t_{1}< t_{2}\), \(u\in{B_{r}}\):

(i) If \(0\leq{t_{1}}< t_{2}\leq 1\), then

$$\begin{aligned} &\bigl\vert (T_{1}u) (t_{2})-(T_{1}u) (t_{1}) \bigr\vert \\ &\quad \leq \frac{1}{\Gamma (\alpha )} \int _{0}^{t_{2}}(t_{2}-s)^{\alpha -1} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr)} \bigr\vert {\, ds} \\ &\qquad{} -\frac{1}{\Gamma (\alpha )} \int _{0}^{t_{1}}(t_{1}-s)^{\alpha -1} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr)} \bigr\vert {\, ds} \\ &\qquad{} + \bigl( \vert {m_{5}} \vert \bigl(t_{2}^{2}-t_{1}^{2} \bigr)+ \vert {m_{1}} \vert (t_{2}-t_{1}) \bigr)I_{0^{+}}^{\alpha +\sigma} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)} \bigr\vert (\eta ) \\ &\qquad{} + \bigl( \vert {m_{6}} \vert \bigl(t_{2}^{2}-t_{1}^{2} \bigr)+ \vert {m_{2}} \vert (t_{2}-t_{1}) \bigr)I_{0^{+}}^{\alpha} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)} \bigr\vert (1) \\ &\qquad{} + \bigl( \vert {m_{7}} \vert \bigl(t_{2}^{2}-t_{1}^{2} \bigr)+ \vert {m_{3}} \vert (t_{2}-t_{1}) \bigr)I_{0^{+}}^{\alpha -1} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)} \bigr\vert (1) \\ &\quad \leq \frac{1}{\Gamma (\alpha )} \int _{0}^{t_{1}} \bigl[(t_{2}-s)^{ \alpha -1}-(t_{1}-s)^{\alpha -1} \bigr] \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)} \bigr\vert {\, ds} \\ &\qquad{} +\frac{1}{\Gamma (\alpha )} \int _{t_{1}}^{t_{2}}(t_{2}-s)^{\alpha -1} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr)} \bigr\vert {\, ds} \\ &\qquad{} + \bigl(t_{2}^{2}-t_{1}^{2} \bigr)[\bigl(2 \vert {m_{5}} \vert + \vert {m_{1}} \vert \bigr)I_{0^{+}}^{\alpha +\sigma} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr)} \bigr\vert (\eta ) \\ &\qquad{} +\bigl(2 \vert {m_{6}} \vert + \vert {m_{2}} \vert \bigr)I_{0^{+}}^{\alpha} \bigl\vert {f \bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)} \bigr\vert (1) \\ &\qquad{} +\bigl(2 \vert {m_{7}} \vert + \vert {m_{3}} \vert \bigr)I_{0^{+}}^{\alpha -1} \bigl\vert {f \bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr)} \bigr\vert (1)] \\ &\quad \leq{M_{r}}(t_{2}-t_{1}) \biggl[ \frac{1}{\Gamma (\alpha )}+ \frac{2 \vert {m_{5}} \vert + \vert {m_{1}} \vert }{\Gamma (\alpha +\sigma +1)} \eta ^{\alpha +\sigma}+ \frac{2 \vert {m_{6}} \vert + \vert {m_{2}} \vert }{\Gamma (\alpha +1)}+ \frac{2 \vert {m_{7}} \vert + \vert {m_{3}} \vert }{\Gamma (\alpha )} \biggr]. \end{aligned}$$

Similarly, we obtain:

$$\begin{aligned} &\bigl\vert {}^{c}D_{0^{+}}^{\beta}(T_{1}u) (t_{2})-{}^{c}D_{0^{+}}^{\beta}(T_{1}u) (t_{1}) \bigr\vert \\ &\quad \leq{M_{r}} \biggl[ \frac{t_{2}^{\alpha -\beta}-t_{1}^{\alpha -\beta}}{\Gamma (\alpha -\beta +1)}+ \frac{2 \vert {m_{5}} \vert\vert {t_{2}^{2-\beta}-t_{1}^{2-\beta}} \vert +(2-\beta ) \vert {m_{1}} \vert\vert {t_{2}^{1-\beta}-t_{1}^{1-\beta}} \vert }{\Gamma (3-\beta )\Gamma (\alpha +\sigma +1)} \\ &\qquad {}+ \frac{2 \vert {m_{6}}\vert\vert {t_{2}^{2-\beta}-t_{1}^{2-\beta}} \vert +(2-\beta ) \vert {m_{2}} \vert\vert {t_{2}^{1-\beta}-t_{1}^{1-\beta}} \vert }{\Gamma (3-\beta )\Gamma (\alpha +1)} \\ &\qquad {}+ \frac{2 \vert {m_{7}} \vert\vert {t_{2}^{2-\beta}-t_{1}^{2-\beta}} \vert +(2-\beta ) \vert {m_{3}} \vert\vert {t_{2}^{1-\beta}-t_{1}^{1-\beta}} \vert }{\Gamma (3-\beta )\Gamma (\alpha )} \biggr]. \end{aligned}$$

(ii) If \(-\tau \leq{t_{1}}<0<t_{2}\leq 1\), then

$$\begin{aligned} \bigl\vert (T_{1}u) (t_{2})-(T_{1}u) (t_{1}) \bigr\vert &\leq \bigl\vert (T_{1}u) (t_{2})-(T_{1}u) (0) \bigr\vert + \bigl\vert (T_{1}u) (0)-(T_{1}u) (t_{1}) \bigr\vert \\ &\leq \frac{1}{\Gamma (\alpha )} \int _{0}^{t_{2}}(t_{2}-s)^{\alpha -1} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr)} \bigr\vert {\, ds} \\ &\quad {}+ \bigl( \vert {m_{5}} \vert {t_{2}^{2}}+ \vert {m_{1}} \vert {t_{2}} \bigr)I_{0^{+}}^{ \alpha +\sigma} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr)} \bigr\vert ( \eta ) \\ &\quad {}+ \bigl( \vert {m_{6}} \vert {t_{2}^{2}}+ \vert {m_{2}} \vert {t_{2}} \bigr)I_{0^{+}}^{ \alpha} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr)} \bigr\vert (1) \\ &\quad {}+ \bigl( \vert {m_{7}} \vert {t_{2}^{2}}+ \vert {m_{3}} \vert {t_{2}} \bigr)I_{0^{+}}^{ \alpha -1} \bigl\vert {f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr)} \bigr\vert (1)+ \bigl\vert \phi (t_{1}) \bigr\vert \\ &\leq{M_{r}}t_{2} \biggl[\frac{1}{\Gamma (\alpha )}+ \frac{ \vert {m_{5}} \vert + \vert {m_{1}} \vert }{\Gamma (\alpha +\sigma +1)} \eta ^{\alpha +\sigma}+ \frac{ \vert {m_{6}} \vert + \vert {m_{2}} \vert }{\Gamma (\alpha +1)} \\ &\quad {}+ \frac{ \vert {m_{7}} \vert + \vert {m_{3}} \vert }{\Gamma (\alpha )} \biggr]+ \bigl\vert \phi (t_{1}) \bigr\vert . \end{aligned}$$

(iii) If \(-\tau \leq{t_{1}}< t_{2}\leq 0\), it can be seen from the definition of Ï• that:

$$ \bigl\vert (T_{1}u) (t_{2})-(T_{1}u) (t_{1}) \bigr\vert = \bigl\vert \phi (t_{2})-\phi (t_{1}) \bigr\vert . $$

It can be seen from (i)–(iii) that \(T_{1}(B_{r})\) is equicontinuous.

Step 3: We will prove that \(T_{2}\) is contractive. \(\forall{u,v}\in{X}\), by \((H_{3})\), we have

$$\begin{aligned}& \begin{aligned} \bigl\vert {T_{2}u(t)-T_{2}v(t)} \bigr\vert &\leq \bigl\vert {\bigl(m_{8}t^{2}-m_{4}t \bigr)}\bigl(g(u)-g(v)\bigr) \bigr\vert \\ &\leq{P_{1}}\omega \Vert {u-v} \Vert _{J} \\ &\leq{P_{1}}\omega \Vert {u-v} \Vert _{X},\quad \forall{t}\in{J}, \end{aligned} \\& \bigl\vert {{}^{c}D_{0^{+}}^{\beta}T_{2}u(t)-{}^{c}D_{0^{+}}^{\beta}T_{2}v(t)} \bigr\vert \leq{P_{2}\omega \|{u-v}}\| _{X},\quad \forall{t} \in{J}. \end{aligned}$$

Hence,

$$ \Vert {T_{2}u-T_{2}v} \Vert _{X}\leq (P_{1}+P_{2})\omega \Vert {u-v} \Vert _{X}\leq \Vert {u-v} \Vert _{X}.$$

Hence, \(T_{2}\) is contractive.

Step 4: Let \(\Omega = \{u\in{X}:\lambda{T_{2}}(\frac{u}{\lambda})+\lambda{T_{1}(u)}=u, \lambda \in (0,1) \}\). \(\forall{u}\in \Omega \), there exists \(\lambda \in (0,1)\), such that

$$\begin{aligned} u(t)&=\lambda \biggl[I_{0^{+}}^{\alpha}f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr) (t)+\bigl(m_{5}t^{2}-m_{1}t \bigr)I_{0^{+}}^{ \alpha +\sigma}f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{\beta}u(s) \bigr) (\eta ) \\ &\quad {}+\bigl(m_{6}t^{2}-m_{2}t \bigr)I_{0^{+}}^{\alpha}f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr) (1)+\bigl(m_{7}t^{2}-m_{3}t \bigr)I_{0^{+}}^{\alpha -1}f\bigl(s,u_{s},{}^{c}D_{0^{+}}^{ \beta}u(s) \bigr) (1) \\ &\quad {}+\bigl(m_{8}t^{2}-m_{4}t\bigr)g\biggl( \frac{u}{\lambda}\biggr) \biggr],\quad \forall{t} \in{J}. \end{aligned}$$

According to \((H_{3})\) and \((H_{4})\), we obtain

$$\begin{aligned} \bigl\vert {u(t)} \bigr\vert &\leq \bigl(1+ \Vert {u} \Vert _{X}\bigr)\bigl[I_{0^{+}}^{ \alpha}q(s) (t)+\bigl( \vert {m_{5}} \vert + \vert {m_{1}} \vert \bigr)I_{0^{+}}^{ \alpha +\sigma}q(s) (\eta )+\bigl( \vert {m_{6}} \vert + \vert {m_{2}} \vert \bigr)I_{0^{+}}^{ \alpha}q(s) (1) \\ &\quad {}+\bigl( \vert {m_{7}} \vert + \vert {m_{3}} \vert \bigr)I_{0^{+}}^{\alpha -1}q(s) (1)\bigr]+\bigl( \vert {m_{8}} \vert + \vert {m_{4}} \vert \bigr)\omega \Vert {u} \Vert _{X},\quad \forall{t}\in{J}. \end{aligned}$$

Thus, we have

$$\begin{aligned}& \Vert {u} \Vert _{\infty}\leq{Q_{1}} \Vert {q} \Vert _{L^{1}}\bigl(1+ \Vert {u} \Vert _{X} \bigr)+P_{1}\omega \Vert {u} \Vert _{X}+ \Vert \phi \Vert _{\infty}, \\& \bigl\Vert {}^{c}D_{0^{+}}^{\beta}u \bigr\Vert _{J}\leq{Q_{2}} \Vert {q} \Vert _{L^{1}} \bigl(1+ \Vert {u} \Vert _{X}\bigr)+P_{2} \omega \Vert {u} \Vert _{X}, \end{aligned}$$

then,

$$ \Vert {u} \Vert _{X}\leq{(Q_{1}+Q_{2})} \Vert {q} \Vert _{L^{1}}\bigl(1+ \Vert {u} \Vert _{X}\bigr)+(P_{1}+P_{2})\omega \Vert {u} \Vert _{X}+ \Vert \phi \Vert _{\infty}. $$
(3.11)

From (3.10) and (3.11), we obtain

$$ \Vert {u} \Vert _{X}\leq \frac{{(Q_{1}+Q_{2})} \Vert {q} \Vert _{L^{1}}+ \Vert \phi \Vert _{\infty}}{1-[(Q_{1}+Q_{2}) \Vert {q} \Vert _{L^{1}}+(P_{1}+P_{2})\omega ]}.$$

Therefore, Ω is bounded. Hence, T has at least a fixed point, which is the solution of BVP (1.1). □

4 An example

Let \(\alpha =\frac{5}{2}\), \(\beta =\frac{1}{2}\), \(\tau =\frac{1}{2}\), \(\eta = \frac{1}{5}\), \(\sigma =\frac{1}{4}\), \(a=1\), \(b=2\), \(c=1\), \(\phi (t)=\frac{1}{2}t^{2}\), then we have

$$\begin{aligned}& m_{1} =-1.1140,\qquad m_{2}=-0.0117,\qquad m_{3}=-0.0059,\qquad m_{4}=0.0059, \\& m_{5} =0.8355,\qquad m_{6}=0.4912,\qquad m_{7}=-0.2456,\qquad m_{8}=0.2456, \\& \Delta =-3.5908, \qquad Q_{1}=2.6265,\qquad Q_{2}=3.7833,\qquad P_{1}=0.2515, \\& P_{2} =0.3761, \qquad Q_{1}+Q_{2}=6.4098,\qquad P_{1}+P_{2}=0.6276. \end{aligned}$$

Let

$$ f(t,x,y)=\frac{e^{t}+t^{2}}{138(1+y^{2})} \biggl(x\biggl(-\frac{1}{2}\biggr)+y+1 \biggr), \qquad g(u)=\frac{1}{163} \int _{0}^{1}u(t)\,dt . $$

We consider the following boundary value problem:

$$ \textstyle\begin{cases} {}^{c}D_{0^{+}}^{\frac{5}{2}}u(t)=f(t,u_{t}, {}^{c}D_{0^{+}}^{\frac{1}{2}}u(t)),\quad t\in{J}:=[0,1], \\ u(0)=0, \qquad u^{\prime }(0)=aI_{0^{+}}^{\frac{1}{4}}u(\frac{1}{5}), \\ 2u(1)+u^{\prime }(1)=\frac{1}{163}\int _{0}^{1}u(t)\,dt , \\ u(t)=\frac{1}{2}t^{2},\quad {-}\frac{1}{2}\leq{t}\leq 0, \end{cases} $$
(4.1)

then for \(\forall{t}\in{J}\), \(\forall{u}\in{C[-\frac{1}{2},0]}\), \(\forall{v}\in \mathbb{R}\), we obtain

$$\begin{aligned} \bigl\vert {f(t,u,v)} \bigr\vert &= \biggl\vert \frac{e^{t}+t^{2}}{138(1+y^{2})} \biggl(u\biggl(-\frac{1}{2}\biggr)+v+1 \biggr) \biggr\vert \\ &\leq \frac{e^{t}+1}{138}\bigl(1+ \Vert {u} \Vert _{\infty}+ \vert {v} \vert \bigr). \end{aligned}$$

For \(\forall{t}\in{J}\), \(\forall{u,v}\in{C[0,1]}\), we have

$$\begin{aligned} \bigl\vert {g(u)-g(v)} \bigr\vert &= \biggl\vert \frac{1}{163} \int _{0}^{1}u(t)\,dt - \frac{1}{163} \int _{0}^{1}v(t)\,dt \biggr\vert \\ &\leq \frac{1}{163} \int _{0}^{1} \Vert {u-v} \Vert _{J}\,dt \\ &\leq \frac{1}{163} \Vert {u-v} \Vert _{J}. \end{aligned}$$

Thus, \(q(t)=\frac{e^{t}+1}{138}\), \(\|{q}\| _{L^{1}}=\frac{e}{138}\), \(\omega =\frac{1}{163}\), \((Q_{1}+Q_{2})\|{q}\| _{L^{1}}+(P_{1}+P_{2})\omega =0.1301<1\). Therefore, according to Theorem 3.3, BVP (4.1) has at least one solution.

Availability of data and materials

All data generated or analyzed during this study are included in this article.

References

  1. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Math. Stud., vol. 204, pp. 43–67 (2006)

    Book  MATH  Google Scholar 

  2. Adiguzel, R.S., Aksoy, U., Karapinar, E., et al.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. 20(2), 313–333 (2021)

    Google Scholar 

  3. Lazreg, J.E., Abbas, S., Benchohra, M., et al.: Impulsive Caputo–Fabrizio fractional differential equations in b-matric spaces. Open Math. 19, 363–372 (2021)

    Article  MATH  Google Scholar 

  4. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  5. Lakshmkantham, V.: Theory of fractional functional differential equations. Nonlinear Anal. 69, 3337–3343 (2008)

    Article  Google Scholar 

  6. Agarwal, R., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problem of non-linear fractional differential equations and inclusions. J. Math. Appl. 109(3), 973–1033 (2010)

    MATH  Google Scholar 

  7. Isaia, F.: On a nonlinear integral equation without compactness. Acta Math. Univ. Comen. 75(2), 233–240 (2016)

    MATH  Google Scholar 

  8. Hajipour, M., Jajarmi, A., Malek, A., et al.: Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation. Appl. Math. Comput. 325, 146–158 (2018)

    MATH  Google Scholar 

  9. Luca, R., Tudorache, A.: Nonnegative solutions for a Riemann–Liouville fractional boundary value problem. Open J. Appl. Sci. 9, 749–760 (2019)

    Google Scholar 

  10. Ahmad, B., Ntouyas, S.K.: Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Appl. Math. Comput. 266, 615–622 (2015)

    MATH  Google Scholar 

  11. Fulai, C., Baleanu, D., Cheng, W.G.: Existence results of fractional differential equations with Riesz–Caputo derivative. Eur. Phys. J. Spec. Top. 226, 3411–3425 (2017)

    Article  Google Scholar 

  12. Tian, Y., Bai, Z., Sun, S.: Positive solutions for a boundary value problem of fractional differential equation with p-Laplacian operator. Adv. Differ. Equ. 2019, 349 (2019)

    Article  MATH  Google Scholar 

  13. Benchohra, M., Henderson, J., Ntouyas, S., et al.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338, 1340–1350 (2008)

    Article  MATH  Google Scholar 

  14. Wen, Y., Zhou, X.F., Zhang, Z., et al.: Lyapunov method for nonlinear fractional differential systems with delay. Nonlinear Dyn. 82, 1015–1025 (2015)

    Article  MATH  Google Scholar 

  15. Zhao, K., Wang, K.: Existence of solutions for the delayed nonlinear fractional functional differential equations with three-point integral boundary value conditions. Adv. Differ. Equ. 2016, 284 (2016)

    Article  MATH  Google Scholar 

  16. Zhao, K.: Triple positive solutions for two classes of delayed nonlinear fractional FDEs with nonlinear integral boundary value conditions. Bound. Value Probl. 2015, 181 (2015)

    Article  MATH  Google Scholar 

  17. Derbazi, C., Hammouche, H.: Boundary value problems for Caputo fractional differential equations with nonlocal and fractional integral boundary conditions. Arab. J. Math. 9, 531–544 (2020)

    Article  MATH  Google Scholar 

  18. Amjad, A., Nabeela, K., Seema, I.: On establishing qualitative theory to nonlinear boundary value problem of fractional differential equations. Math. Sci. 15, 395–403 (2021)

    Article  MATH  Google Scholar 

  19. Burton, T.A., Kirk, C.: A fixed point theorem of Krasnoselskii–Schaefer type. Math. Nachr. 189, 23–31 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to the reviewers for their valuable suggestions.

Funding

The work was supported by the Anhui Provincial Natural Science Foundation (1608085MA12).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zongfu Zhou.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors confirm: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all coauthors, if any; that its publication has been approved (tacitly or explicitly) by the responsible authorities at the institution where the work is carried out.

Competing interests

The authors declare no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Zhou, Z. Existence of solutions for Caputo fractional delay differential equations with nonlocal and integral boundary conditions. Fixed Point Theory Algorithms Sci Eng 2023, 1 (2023). https://doi.org/10.1186/s13663-022-00738-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13663-022-00738-3

Keywords